X

Các dạng bài tập Toán lớp 12

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho Chứng minh MN luôn đi qua một điểm cố định.


Câu hỏi:

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho MN=2MAMB+MC. Chứng minh MN luôn đi qua một điểm cố định.

Trả lời:

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho  Chứng minh MN luôn đi qua một điểm cố định. (ảnh 1)

Với cách lấy điểm I như trên, ta có điểm I cố định. Khi đó MN đi qua I, thật vậy:

Theo giả thiết có: MN=2MAMB+MC

⇒ MN=2MAMB+MC=2MI+2IAMIIB+MI+IC

MN=2MI+2IAIB+ICMN=2MI

Suy ra I là trung điểm MN hay MN đi qua I cố định.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:

a) AP=BN

b) Tứ giác OKME là hình chữ nhật.

c) P, O, N thẳng hàng và KE // PN.

Xem lời giải »


Câu 2:

Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức S=1R3+1R4+...+1R2022+1R2023

Xem lời giải »


Câu 3:

Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).

Xem lời giải »


Câu 4:

Tìm m để A giao B bằng rỗng biết A = [m; m + 1] và B = (-1; 3).

Xem lời giải »


Câu 5:

Cho hình bình hành ABCD. Ở phía ngoài hình bình hành, vẽ các hình vuông ABEF và ADGH. Chứng minh:

a)  ΔAHF = ΔADC.

b)  AC HF.

Xem lời giải »


Câu 6:

Cho tứ giác ABCD. M, N là trung điểm của AC và BD.

Chứng minh: AB2 + BC2 + CD2 + DA2 = AC2 + BD2 + 4MN2.

Xem lời giải »


Câu 7:

Cho tam giác nhọn ABC. Vẽ ra phía ngoài của tam giác này các tam giác ABD và tam giác ACE vuông cân tại A. Gọi M là trung điểm của DE. Chứng minh rằng hai đường thẳng MA và BC vuông góc với nhau.

Xem lời giải »