Cho (H) là hình phẳng giới hạn bởi parabol y = căn bậc hai của 3 x^2
Câu hỏi:
Cho (H) là hình phẳng giới hạn bởi parabol , cung tròn có phương trình (với 0 ≤ x ≤ 2) và trục hoành (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
A.
B.
C.
D.
Trả lời:
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và
Xem lời giải »
Câu 2:
Thể tích vật thể nằm giữa hai mặt phẳng x = 0 và x = 2, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x là một nửa đường tròn đường kính bằng:
Xem lời giải »
Câu 3:
Cho hình phẳng giới hạn bởi . Thể tích vật tròn xoay khi D quay quanh trục Ox là: với . Tính
Xem lời giải »
Câu 4:
Tính thể tích vật thể có đáy là một hình tròn giới hạn bởi đường tròn có phương trình và mỗi thiết diện vuông góc với trục Ox là một hình vuông (tham khảo hình bên)
Xem lời giải »
Câu 5:
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số và là:
Xem lời giải »
Câu 6:
Diện tích S của hình phẳng giới hạn bởi các đường được tính bởi công thức nào dưới đây?
Xem lời giải »