X

Các dạng bài tập Toán lớp 12

Cho hình bình hành ABCD có AB = 2AD, góc D = 70 độ


Câu hỏi:

Cho hình bình hành ABCD có AB = 2AD; \(\widehat D = 70^\circ \). Vẽ BH vuông góc AD (H AD). Gọi M, N lần lượt là trung điểm cạnh CD, AB.

a) Chứng minh tứ giác ANMD là hình thoi.

b) Tính góc \(\widehat {HMC}\).

Trả lời:

Cho hình bình hành ABCD có AB = 2AD, góc D = 70 độ (ảnh 1)

Ta có:

AB // CD (tính chất hình bình hành)

N là trung điểm của AB nên AN = 1/2 AB

M là trung điểm của CD nên DM = 1/2 CD

Do AB = CD (tính chất hình bình hành) nên AN = DM

Do đó, AN // DM và AN = DM

Từ đó suy ra tứ giác ANMD là hình bình hành có hai cạnh kề bằng nhau, nên là hình thoi.

Ta có:

BH AD (theo đề bài)

Gọi I là giao điểm của BH và MN

Ta có BI = HI (tính chất tam giác vuông cân)

Ta có MI = NI (vì M, N là trung điểm của CD, AB)

Do đó, BI = HI = MI = NI

Từ đó suy ra BH và MN giao nhau tại trung điểm I và vuông góc với nhau.

Vậy ta đã chứng minh được tứ giác ANMD là hình thoi.

b) Ta có: MN // DA và DA BH

Suy ra: MN BH và đi qua trung điểm của BH

Hay MN là đường trung trực của BH

\(\widehat {{M_1}} = \widehat {{M_2}}\)

Lại có: \(\widehat {{M_2}} = \widehat {{M_3}};\widehat {NMC} = \widehat {ADM} = 70^\circ \)

Suy ra: \(\widehat {{M_2}} = \widehat {{M_3}} = 70^\circ :2 = 35^\circ \)

Vậy: \[\widehat {HMC} = 3.35^\circ = 105^\circ \].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Xét xem dãy un = 3n – 1 có phải là cấp số nhân hay không? Nếu phải hãy xác định công bội.

Xem lời giải »


Câu 2:

Một vé xem phim có mức giá là 60000 đồng. Trong dịp khuyến mãi cuối năm 2018, số lượng người xem phim tăng lên 45% nên tổng doanh thu cũng tăng 8,75%. Hỏi rạp phim đã giảm giá mỗi vé bao nhiêu % so với giá bán ban đầu?

Xem lời giải »


Câu 3:

Tính giá trị của biểu thức: P = (x – 10)2 – x(x + 80) tại x = 0,87.

Xem lời giải »


Câu 4:

Tính giá trị biểu thức A = 100 – 99 + 98 – 97 + … + 4 – 3 + 2.

Xem lời giải »


Câu 5:

Cho tam giác ABC vuông tại A, biết BC = 13cm; AB = 5cm.

a, Tính độ dài cạnh AC.

b, Kẻ đường cao AH. Tính độ dài đoạn thẳng AH.

Xem lời giải »


Câu 6:

Cho tam giác ABD có AB = 15cm, AD = 20cm, BD = 25cm. Vẽ AM vuông góc BD.

a) Chứng minh: tam giác ABD vuông. Tính AM, BM, MD.

b) Kẻ tia Bx // AD, vẽ AM vuông góc BD cắt Bx tại C. Chứng minh: AB2 = AD.BC.

Xem lời giải »


Câu 7:

1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?

Xem lời giải »


Câu 8:

Cho tam giác ABC vuông tại A, Đường cao AH. Biết BC = 8cm, BH = 2cm.

a. Tính AB, AC, AH.

b. Trên AC lấy điểm K (K khác A và C), gọi D là hình chiếu của A trên BK. Chứng

minh rằng BD.BK = BH.BC.

c. Chứng minh rằng SBHD = \(\frac{1}{4}\)SBKC.cos2\(\widehat {ABD}\).

Xem lời giải »