X

Các dạng bài tập Toán lớp 12

Cho tam giác ABD có AB = 15cm, AD = 20cm, BD = 25cm


Câu hỏi:

Cho tam giác ABD có AB = 15cm, AD = 20cm, BD = 25cm. Vẽ AM vuông góc BD.

a) Chứng minh: tam giác ABD vuông. Tính AM, BM, MD.

b) Kẻ tia Bx // AD, vẽ AM vuông góc BD cắt Bx tại C. Chứng minh: AB2 = AD.BC.

Trả lời:

Cho tam giác ABD có AB = 15cm, AD = 20cm, BD = 25cm (ảnh 1)

a) Ta thấy: 252 = 202 + 152 hay AB2 + AD2 = BD2

Theo định lí Pytago đảo, suy ra tam giác ABD vuông tại A

Áp dụng hệ thức lượng trong tam giác ABD vuông ta có:

AB.AD = AM.BD AM = \(\frac{{AB.AD}}{{BD}} = \frac{{15.20}}{{25}} = 12cm\)

AD2 = MD.BD DM = \(\frac{{A{D^2}}}{{BD}} = \frac{{{{20}^2}}}{{25}} = 16cm\)

BM = BD – DM = 25 – 16 = 9(cm)

b) Vì AB AD do ABD vuông tại A

Và Bx // AD

Nên Bx AB tại B. Suy ra: \(\widehat {ABC} = 90^\circ \)

Xét tam giác BAM và tam giác BDA có:

Chung \(\widehat B\)

\(\widehat {BMA} = \widehat {BAD} = 90^\circ \)

∆BMA ∆BAD (g.g)

Suy ra: \(\widehat {BAM} = \widehat {BDA}\) hay \(\widehat {BAC} = \widehat {BDA}\)

Xét tam giác BAC và tam giác BAD có:

\(\widehat {BAC} = \widehat {BDA}\)(chứng minh trên)

\(\widehat {ABC} = \widehat {BAD} = 90^\circ \)

∆BAC ∆ADB (g.g)

\(\frac{{AB}}{{AD}} = \frac{{AC}}{{AB}}\) AB2 = AD.AC.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Xét xem dãy un = 3n – 1 có phải là cấp số nhân hay không? Nếu phải hãy xác định công bội.

Xem lời giải »


Câu 2:

Một vé xem phim có mức giá là 60000 đồng. Trong dịp khuyến mãi cuối năm 2018, số lượng người xem phim tăng lên 45% nên tổng doanh thu cũng tăng 8,75%. Hỏi rạp phim đã giảm giá mỗi vé bao nhiêu % so với giá bán ban đầu?

Xem lời giải »


Câu 3:

Tính giá trị của biểu thức: P = (x – 10)2 – x(x + 80) tại x = 0,87.

Xem lời giải »


Câu 4:

Tính giá trị biểu thức A = 100 – 99 + 98 – 97 + … + 4 – 3 + 2.

Xem lời giải »


Câu 5:

1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?

Xem lời giải »


Câu 6:

Cho tam giác ABC vuông tại A, Đường cao AH. Biết BC = 8cm, BH = 2cm.

a. Tính AB, AC, AH.

b. Trên AC lấy điểm K (K khác A và C), gọi D là hình chiếu của A trên BK. Chứng

minh rằng BD.BK = BH.BC.

c. Chứng minh rằng SBHD = \(\frac{1}{4}\)SBKC.cos2\(\widehat {ABD}\).

Xem lời giải »


Câu 7:

Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. Kẻ một đường thẳng d nằm giữa hai tia AB, AO và đi qua A cắt đường tròn (O) tại E, F (E nằm giữa A, F).

1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn.

2. Gọi H là giao điểm của AD và BC. Chứng minh OH.OA = OE2.

3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh SF là tiếp tuyến của đường tròn (O).

Xem lời giải »


Câu 8:

Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?

Xem lời giải »