X

Các dạng bài tập Toán lớp 12

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC = a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông


Câu hỏi:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC = a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên cạnh bên SB và SC. Thể tích của khối cầu tạo bởi mặt cầu ngoại tiếp hình chóp A.HKCB là:

A. 2πa33.

B. 2πa3.

C. πa36.

D. πa32.

Trả lời:

Chọn A
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC = a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông (ảnh 1)

Theo giả thiết, ta có ABC^=900 và AKC^=900    (1)

Do AHSBBCAH  BCSABAHHC.     (2)

Từ (1) và (2), suy ra ba điểm B, H, K cùng nhìn xuống AC dưới một góc 90o nên hình chóp A.HKCB nội tiếp mặt cầu tâm I là trung điểm AC, bán kính R=AC2=AB22=a22

Vậy thể tích khối cầu V=43πR3=2πa33 (đvtt).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (C)  đường kính AB  và đường thẳng Δ. Để hình tròn xoay sinh bởi (C)  khi quay quanh Δ là một mặt cầu thì cần có thêm điều kiện nào sau đây:

(I) Đường kính AB thuộc Δ.

(II) Δ cố định và đường kính AB thuộc Δ.

(III) Δ cố định và hai điểm A, B cố định trên Δ.

Xem lời giải »


Câu 2:

Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?
Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. (ảnh 1)

Xem lời giải »


Câu 3:

Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

Xem lời giải »


Câu 4:

Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC=R3. Khi đó khoảng cách từ O đến BC bằng:

Xem lời giải »


Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, BD = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy (ABCD) là trung điểm OD. Đường thẳng SD tạo với mặt đáy một góc bằng 60o . Bán kính mặt cầu ngoại tiếp hình chóp S.ABCD nhận giá trị nào sau đây?

Xem lời giải »


Câu 6:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC) là trung điểm H của cạnh BC. Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 60o . Gọi G  là trọng tâm tam giác SAC , R  là bán kính mặt cầu có tâm G  và tiếp xúc với mặt phẳng (SAB) . Đẳng thức nào sau đây sai?

Xem lời giải »


Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên SAB là tam giác vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối cầu ngoại tiếp hình chóp S.ABCD là:

Xem lời giải »


Câu 8:

Cho hình chóp S.ABC có đáy ABC là một tam giác đều cạnh bằng a. Cạnh bên SA=a3 và vuông góc với đáy (ABC). Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là:

Xem lời giải »