Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là
Câu hỏi:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’. Khoảng cách giữa hai đường thẳng MN và B’D’ bằng:
A.
B.
C. 3a
D.
Trả lời:
Câu hỏi:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’. Khoảng cách giữa hai đường thẳng MN và B’D’ bằng:
A.
B.
C. 3a
D.
Trả lời:
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;3). Mặt phẳng (P) đi qua M và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho thể tích của tứ diện OABC nhỏ nhất. Phương trình của mặt phẳng (P) là:
Câu 2:
Trong hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng . Một điểm M thay đổi trên d. Biết giá trị nhỏ nhất của nửa chu vi tam giác MAB là số có dạng với a, b là các số nguyên. Khi đó:
Câu 3:
Trong không gian Oxyz, cho điểm M(1;3;-2). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x’Ox, y’Oy, z’Oz lần lượt tại ba điểm phân biệt A, B, C sao cho
Câu 4:
Trong không gian Oxyz, cho mặt cầu (S): và đường thẳng . Tọa độ điểm M trên đường thẳng d sao cho từ M kẻ được 3 tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm) thỏa mãn có dạng M(a;b;c) với a < 0. Tổng bằng:
Câu 5:
Trong không gian Oxyz, cho mặt phẳng và điểm M(1;1;1). Gọi A là điểm thuộc tia Oz, B là hình chiếu của A lên . Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB là:
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD. Tính cô sin của góc giữa hai mặt phẳng (GMN) và (ABCD)
Câu 7:
Trong không gian Oxyz, cho hai điểm A(10;6;-2), B(5;10;-9) và mặt phẳng . Điểm M di động trên mặt phẳng sao cho MA, MB luôn tạo với các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn cố định. Hoành độ của tâm đường tròn bằng:
Câu 8:
Trong không gian Oxyz, cho mặt phẳng , đường thẳng và điểm . Gọi là đường thẳng nằm trong mặt phẳng , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng: