X

Các dạng bài tập Toán lớp 12

Cho khối hộp chữ nhật ABCD. A'B'C'D' có thể tích bằng 2110. Biết (MNP)


Câu hỏi:

Cho khối hộp chữ nhật ABCD. A'B'C'D' có thể tích bằng 2110. Biết (MNP), DN=3ND', CP=2C'P như hình vẽ. Mặt phẳng (MNP) chia khối hộp đã cho thành hai khối đa diện. Thể tích khối đa diện nhỏ hơn bằng:

A.52756

B.84409

C.748518

D.527512

Trả lời:

Chọn A

Gọi Q là giao điểm của mặt phẳng (MNP) với BB'.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tứ diện OABC biết OA, OB, OC đôi một vuông góc với nhau, biết OA=3, OB=4 và thể tích khối tứ diện OABC bằng 6. Khi đó khoảng cách từ O đến mặt phẳng (ABC) bằng:

Xem lời giải »


Câu 2:

Cho hình chóp tứ giác đều S. ABCD. Mặt phẳng (P) chứa đường thẳng AC và vuông góc với mặt phẳng (SCD), cắt đường thẳng SD tại E. Gọi V và V₁ lần lượt là thể tích các khối chóp S.ABCD và D.ACE. Tính số đo góc tạo bởi mặt bên và mặt đáy của hình chóp S.ABCD biết V = 5V1

Xem lời giải »


Câu 3:

Cho hình chóp S. ABC, có AB=5 (cm), BC=6 (cm), AC=7 (cm). Các mặt bên tạo với đáy 1 góc 600. Thể tích của khối chóp bằng:

Xem lời giải »


Câu 4:

Cho khối lăng trụ tam giác đều ABC. A'B'C' có cạnh đáy là a và khoảng cách từ A đến mặt phẳng (A'BC) bằng a/2. Thể tích của khối lăng trụ bằng:

Xem lời giải »


Câu 5:

Xét tứ diện ABCD có các cạnh AB=BC=CD=DA=1 và AC, BD thay đổi. Giá trị lớn nhất của thể tích khối tứ diện ABCD bằng:

Xem lời giải »


Câu 6:

Cho khối lăng trụ tam giác ABC. A'B'C'. Gọi M, N lần lượt là trung điểm của BB' và CC'. Mặt phẳng (AMN) chia khối lăng trụ thành hai phần. Gọi V₁ là thể tích của khối đa diện chứa đỉnh B' và V₂ là thể tích khối đa diện còn lại. Tính tỉ số V₁/V₂.

Xem lời giải »


Câu 7:

Xét tứ diện ABCD có các cạnh AC=CD=DB=BA=2 và AD, BC thay đổi. Giá trị lớn nhất của thể tích tứ diện ABCD bằng:

Xem lời giải »


Câu 8:

Cho hình chóp S.ABC có cạnh bên SA vuông góc với đáy, AB = a, BC = a2, SC=2a và . Tính bán kính R của mặt cầu ngoại tiếp tứ diện S.ABC

Xem lời giải »