X

Các dạng bài tập Toán lớp 12

Cho mặt cầu (S): x^2 + y^2 + z^2 + 4x - 2y + 6z - 2 = 0 và mặt phẳng P: 3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu cầu (S') chứa (C) và đ


Câu hỏi:

Cho mặt cầu S:x2+y2+z2+4x2y+6z2=0 và mặt phẳng P:3x+2y+6z+1=0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu cầu (S') chứa (C) và điểm M(1,-2,1)

A. x2+y2+z2+5x8y+12z5=0

B. x2+y2+z25x8y+12z+5=0

C. x2+y2+z25x+8y12z+5=0

D. x2+y2+z25x8y12z5=0

Trả lời:

Chọn D

Phương trình của S':S+mP=0,  m0

S':x2+y2+z2+4x2y+6z2+m3x+2y+6z+1=0

(S') qua M1,2,16m+18=0m=3

S':x2+y2+z25x8y12z5=0

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (C)  đường kính AB  và đường thẳng Δ. Để hình tròn xoay sinh bởi (C)  khi quay quanh Δ là một mặt cầu thì cần có thêm điều kiện nào sau đây:

(I) Đường kính AB thuộc Δ.

(II) Δ cố định và đường kính AB thuộc Δ.

(III) Δ cố định và hai điểm A, B cố định trên Δ.

Xem lời giải »


Câu 2:

Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?
Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. (ảnh 1)

Xem lời giải »


Câu 3:

Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

Xem lời giải »


Câu 4:

Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC=R3. Khi đó khoảng cách từ O đến BC bằng:

Xem lời giải »


Câu 5:

Cho hai mặt cầu S:x2+y2+z2+4x2y+2z3=0S':x2+y2+z26x+4y-2z2=0; Gọi (C) là giao tuyến của (S) và (S'). Viết phương trình của (C)

Xem lời giải »


Câu 6:

Cho hai mặt cầu S:x2+y2+z2+4x2y+2z3=0S':x2+y2+z26x+4y-2z2=0. Gọi (C)  là giao tuyến của (S) và (S'). Viết phượng trình mặt cầu S1 qua (C) và điểm A(2,1,-3)

Xem lời giải »


Câu 7:

Cho mặt cầu S:x2+y2+z26x4y4z12=0. Viết phương trình tổng quát của đường kính AB song song với đường thẳng D:x=2t+1;y=3;z=5t+2,t

Xem lời giải »


Câu 8:

Cho mặt cầu S:x2+y2+z26x4y4z12=0. Viết phương trình giao tuyến của (S) và mặt phẳng (yOz).

Xem lời giải »