X

Các dạng bài tập Toán lớp 12

Cho mặt (S) tâm I ở trên z’Oz tiếp xúc với hai mặt phẳng (P): 2x - 2y + z - 3 = 0 và (Q): x + 2y - 2z + 9 = 0. Tính tọa độ tâm I và bán kính R:


Câu hỏi:

Cho mặt (S) tâm I ở trên z’Oz tiếp xúc với hai mặt phẳng P:2x2y+z3=0Q:  x+2y2z+9=0. Tính tọa độ tâm I và bán kính R:
A. I0,0,4;   R=13
B. I0,0,6;   R=7
C. I0,0,6;   R=1
D. Hai câu A và C

Trả lời:

Chọn D
I0,0,zdI,P=dI,Qz33=2z+93z1=4z2=6R1=13R2=1
Vậy: I10,0,4;  R1=13I20,0,6;R2=1

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (C)  đường kính AB  và đường thẳng Δ. Để hình tròn xoay sinh bởi (C)  khi quay quanh Δ là một mặt cầu thì cần có thêm điều kiện nào sau đây:

(I) Đường kính AB thuộc Δ.

(II) Δ cố định và đường kính AB thuộc Δ.

(III) Δ cố định và hai điểm A, B cố định trên Δ.

Xem lời giải »


Câu 2:

Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?
Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. (ảnh 1)

Xem lời giải »


Câu 3:

Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

Xem lời giải »


Câu 4:

Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC=R3. Khi đó khoảng cách từ O đến BC bằng:

Xem lời giải »


Câu 5:

Cho hình hợp chữ nhật ABCD.EFGH có A(0,0,0); B(4,0,0); D(0;6;0); E(0,0,2). Tính diện tích mặt cầu (S) ngoại tiếp hình hợp chữ nhật.

Xem lời giải »


Câu 6:

Cho hình hợp chữ nhật ABCD.EFGH có A(0,0,0); B(4,0,0); D(0,6,0); E(0,0,2). Ba mặt phẳng: x - 2z = 0; y - 3 = 0; x + 2z - 4 = 0 chia hình hộp chữ nhật thanh mấy phần bằng nhau?

Xem lời giải »


Câu 7:

Cho tứ diện ABCD có A(1,2,3); B(0,0,3); C(0,2,0); D(1,0,0). Tìm tập hợp các điểm M thỏa mãn AM+BM+CM+DM=8

Xem lời giải »


Câu 8:

Cho mặt cầu (S): x2+y2+z24x+6y+2z2=0 và điểm A(-6,-1,3). Gọi M là tiếp điểm của (S) và tiếp tuyến di động (d) qua A. Tìm tập hợp các điểm M.

Xem lời giải »