X

Các dạng bài tập Toán lớp 12

Cho phương trình mln^2 (x+1)-(x+2-m0ln(x+1)-x-2=0. Tập giá trị của các tham số m


Câu hỏi:

Cho phương trình mln2(x+1) -(x+2-m)ln(x+1)-x-2=0 (1). Tập tất cả các giá trị của tham số m để phương trình (1) có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn 0<x1<2<4<x2 là khoảng a;+. Khi đó, a thuộc khoảng

A. (3,8;3,9)

B. (3,7;3,8)

C. (3,6;3,7)

D. (3,5;3,6) 

Trả lời:

Điều kiện: x > - 1.

Ta có:

Với m = 0 thì phương trình (*) có nghiệm x=-2<-1 (1) nên không thỏa bài toán

Với m0 thì (*) 

Xét  có

 nên ta có bảng biến thiên trên -1;+ như sau:

Để phương trình có nghiệm x1,x2 thỏa thì 

Suy ra 

Đáp án cần chọn là: B.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm giá trị của a để phương trình 2+3x+1-a2-3x -4=0 có 2 nghiệm phân biệt thỏa mãn: x1-x2=log2+33, ta có a thuộc khoảng:

Xem lời giải »


Câu 2:

Tìm tập hợp tất cả các tham số m sao cho phương trình 4x2-2x+1-m.2x2-2x+1+3m-2=0 có 4 nghiệm phân biệt.

Xem lời giải »


Câu 3:

Có bao nhiêu số nguyên m thuộc -2020;2020 sao cho phương trình 4x-12-4m.2x2-2x+3m-2=0 có bốn nghiệm phân biệt?

Xem lời giải »


Câu 4:

Các giá trị thực của tham số m để phương trình: 12x+4-m.3x-m=0 có nghiệm thuộc khoảng (-1; 0) là

Xem lời giải »


Câu 5:

Cho x, y là các số thực dương thỏa mãn log23x+3y+4x2+y2 =(x+y-1)(2x+2y-1)-4(xy-1). Giá trị lớn nhất của biểu thức P=5x+3y-22x+y+1 bằng:

Xem lời giải »


Câu 6:

Số nghiệm của phương trình log3x2-2x=log5x2-2x+2

Xem lời giải »


Câu 7:

Phương trình log3x2-2x+1x+x2+1=3x có tổng tất cả các nghiệm bằng:

Xem lời giải »


Câu 8:

Cho a, b, c là các số thực dương khác 1 thỏa mãn loga2b+logb2c=logacb-2logbcb-3. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P=logab-logbc. Giá trị của biểu thức S=m-3M bằng:

Xem lời giải »