Số nghiệm của phương trình log 3 |x^2-căn 2 x|=log 5 (x^2 -căn 2 x+2)
Câu hỏi:
Số nghiệm của phương trình log3|x2-√2x|=log5(x2-√2x+2)
A. 3
B. 2
C. 1
D. 4
Trả lời:
Đặt
khi đó 
Đặt

Xét (1):

nên hàm số đồng biến trên R.
Mặt khác, f(0)=2 do đó phương trình f(a)=f(0) có 1 nghiệm duy nhất 
Suy ra:
x(vô nghiệm)
Xét (2) 
Đặt

Nên hàm số g (a) nghịch biến trên R do đó phương trình g(a)=1 có tối đa 1 nghiệm.
Mà g(a)=g(1) nên a = 1.
Suy ra
có 2 nghiệm phân biệt thỏa mãn điều kiện.
Vậy phương trình đã cho có 2 nghiệm.
Đáp án cần chọn là: B.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm giá trị của a để phương trình (2+√3)x+(1-a)(2-√3)x -4=0 có 2 nghiệm phân biệt thỏa mãn: x1-x2=log2+√33, ta có a thuộc khoảng:
Xem lời giải »
Câu 2:
Tìm tập hợp tất cả các tham số m sao cho phương trình 4x2-2x+1-m.2x2-2x+1+3m-2=0 có 4 nghiệm phân biệt.
Xem lời giải »
Câu 3:
Có bao nhiêu số nguyên m thuộc [-2020;2020] sao cho phương trình 4(x-1)2-4m.2x2-2x+3m-2=0 có bốn nghiệm phân biệt?
Xem lời giải »
Câu 4:
Các giá trị thực của tham số m để phương trình: 12x+(4-m).3x-m=0 có nghiệm thuộc khoảng (-1; 0) là
Xem lời giải »
Câu 5:
Phương trình log3x2-2x+1x+x2+1=3x có tổng tất cả các nghiệm bằng:
Xem lời giải »
Câu 6:
Cho a, b, c là các số thực dương khác 1 thỏa mãn log2ab+log2bc=logacb-2logbcb-3. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P=logab-logbc. Giá trị của biểu thức S=m-3M bằng:
Xem lời giải »
Câu 7:
Cho các số thực a, b, c thuộc khoảng (1;+∞) và thỏa mãn log2√ab+logbc.logb(c2b) +9logac=4logab. Giá trị của biểu thức logab+logbc2 bằng:
Xem lời giải »
Câu 8:
Cho phương trình 4-|x-m|.log√2(x2-2x+3) +22x-x2.log12(2|x-m|+2)=0 với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:
Xem lời giải »