X

Các dạng bài tập Toán lớp 12

Cho tam giác ABC có trọng tâm G và độ dài ba cạnh AB, BC, CA lần lượt là 15, 18, 27. a) Tính diện tích


Câu hỏi:

Cho tam giác ABC có trọng tâm G và độ dài ba cạnh AB, BC, CA lần lượt là 15, 18, 27.

a) Tính diện tích và bán kính đường tròn nội tiếp tam giác ABC.

b) Tính diện tích tam giác GBC.

Trả lời:

a) Nửa chu vi của tam giác ABC là:

p = (15 + 18 + 27) : 2 = 30

Áp dụng công thức Heron ta tính được diện tích tam giác ABC là:

S = 30.3015.3018.3027=902

Mặt khác S = pr (r là bán kính đường tròn nội tiếp tam giác ABC)

Suy ra r=Sp=90230=32

Vậy diện tích tam giác ABC là 902(đơn vị diện tích) ; bán kính đường tròn nội tiếp tam giác ABC là 32 (đơn vị dộ dài).

b) Do G là trọng tâm tam giác ABC nên G chia tam giác ABC thành ba tam giác GAB, GAC, GBC có diện tích bằng nhau.

Suy ra SGBC=SABC3=9023=302

Vậy diện tích của tam giác GBC là : 302 (đơn vị diện tích).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho BH=13HC. Điểm M di động nằm trên BC sao cho BM=xBC. Tìm x sao cho độ dài của MA+GC đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 2:

Cho tam giác ABC có A^=70°, các đường phân giác BD, CE cắt nhau ở I. Tính BIC^

Cho tam giác ABC có góc A= 70 độ, các đường phân giác BD, CE cắt nhau ở I (ảnh 1)

Xem lời giải »


Câu 3:

Cho tam giác ABC có C^=90°. Kẻ đường cao CH. Biết HB - HA = AC. Tính A^,B^.

Xem lời giải »


Câu 4:

Cho tam giác ABC có góc C nhọn, AH và BK là hai đường cao, HK = 7, diện tích tứ giác ABHK bằng 7 lần diện tích tam giác CHK. Khi đó bán kính đường tròn ngoại tiếp tam giác ABC bằng?

Xem lời giải »


Câu 5:

Cho tứ giác ABCD có A^=110°,B^=90°,C^D^=20°. Tính C^,D^.

Xem lời giải »


Câu 6:

Cho tứ giác ABCD có E là trung điểm của đoạn thẳng AB. Điểm F là trung điểm của đoạn thẳng BC. Điểm G là trung điểm của đoạn thẳng DC. Điểm H là trung điểm của đoạn thẳng AD. Hỏi tứ giác EFGH là hình gì? Chứng minh điều đó.

Xem lời giải »


Câu 7:

Cho tứ giác ABCD, E và F lần lượt là trung điểm của các cạnh AB và CD. Gọi M, N, P, Q lần lượt là trung điểm các đoạn AF, CE, BF và DE. Chứng minh rằng MNPQ là hình bình hành.

Xem lời giải »


Câu 8:

Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).

Xem lời giải »