X

Các dạng bài tập Toán lớp 12

Cho tam giác ABC nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H


Câu hỏi:

Cho tam giác ABC nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Kẻ Bx, Cy lần lượt vuông góc với AB, AC chúng cắt nhau tại K.

1. Chứng minh tứ giác BHCK là hình bình hành và H, M, K thẳng hàng

2. Gọi I là điểm đối xứng với H qua BC. Chứng minh tứ giác BIKC là hình thang cân

3. Gọi G là giao điểm của BK và HI, tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

Trả lời:

Cho tam giác ABC nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H (ảnh 1)

1) Ta có: BH vuông góc với AC

CK vuông góc với AC

BH // CK

Chứng minh tương tự ta có: CH // BK

Xét tứ giác BHCK có: BH // CK; CH//BK

Tứ giác BHCK là hình bình hành

Có M là trung điểm của BC M là trung điểm của HK

M, H, K thẳng hàng

2. Gọi HI cắt BC tại J

Xét tam giác HIK có:  J là trung điểm của HI; M là trung điểm của HK

JM là đường trung bình trong tam giác HIK

IK // MJ hay IK // BC

Cho tam giác ABC nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H (ảnh 2)

CH là đường cao trong tam giác ABC

Tam giác ABC cân tại C

Vậy tứ giác GHCK là hình thang cân

Tam giác ABC cân tại C

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho x + y = 15. Tìm min, max B=x4+y3

Xem lời giải »


Câu 2:

Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27.

Xem lời giải »


Câu 3:

Cho x, y, z thỏa mãn đk x + y + z = a. Tìm GTNN của P=1+ax1+ay1+az

Xem lời giải »


Câu 4:

Cho x + 3y – 4 = 0, tính x3 - x2 + 9x2y - 9y2 + 27xy2 + 27y3 - 6xy

Xem lời giải »


Câu 5:

Tam giác ABC vuông tại A và có AB = AC = a. Tính độ dài đường trung tuyến BM của tam giác đã cho.

Xem lời giải »


Câu 6:

Cho tam giác ABC vuông tại A có AB = 6cm , BC = 10cm. Tính sinC, tan C, cos C, cotC, sinB, cosB, tanB, cotB

Xem lời giải »


Câu 7:

Cho ΔABC có hai trung tuyến CM, BN bằng nhau và cắt nhau tại G. Chứng minh tam giác ABC cân.

Xem lời giải »


Câu 8:

Cho tam giác có ba cạnh lần lượt là 5,6,7. Tìm độ dài đường cao ứng với cạnh có độ dài bằng 6.

Xem lời giải »