X

Các dạng bài tập Toán lớp 12

Cho tam giác ABC nhọn, các đường cao BD và CE. Tia phân giác của các góc ABD và ACE cắt nhau tại O


Câu hỏi:

Cho tam giác ABC nhọn, các đường cao BD và CE. Tia phân giác của các góc ABD và ACE cắt nhau tại O, cắt AC và AB lần lượt tại N và M. Tia BN cắt CE tại K,tia CM cắt BD tại H. Chứng minh rằng:

a) BN vuông góc CM.

b) Tứ giác MNHK là hình thoi.

Trả lời:

Cho tam giác ABC nhọn, các đường cao BD và CE. Tia phân giác của các góc ABD và ACE cắt nhau tại O (ảnh 1)

Cho tam giác ABC nhọn, các đường cao BD và CE. Tia phân giác của các góc ABD và ACE cắt nhau tại O (ảnh 2)

b) Vì BN CM (cmt)

MH KN

Xét tứ giác MNHK có 2 đường chéo MH và KN vuông góc với nhau 

MNHK là hình thoi.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho BH=13HC. Điểm M di động nằm trên BC sao cho BM=xBC. Tìm x sao cho độ dài của MA+GC đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 2:

Cho tam giác ABC có A^=70°, các đường phân giác BD, CE cắt nhau ở I. Tính BIC^

Cho tam giác ABC có góc A= 70 độ, các đường phân giác BD, CE cắt nhau ở I (ảnh 1)

Xem lời giải »


Câu 3:

Cho tam giác ABC có C^=90°. Kẻ đường cao CH. Biết HB - HA = AC. Tính A^,B^.

Xem lời giải »


Câu 4:

Cho tam giác ABC có góc C nhọn, AH và BK là hai đường cao, HK = 7, diện tích tứ giác ABHK bằng 7 lần diện tích tam giác CHK. Khi đó bán kính đường tròn ngoại tiếp tam giác ABC bằng?

Xem lời giải »


Câu 5:

Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H (Hình 61). Tìm trực tâm của các tam giác HAB, HBC, HCA.

Xem lời giải »


Câu 6:

Cho tam giác ABC có 3 góc nhọn và các trung tuyến BM và CN vuông góc với nhau. Chứng minh: cotC+cotB23.

Xem lời giải »


Câu 7:

Cho tam giác ABC có Cạnh BC = a. Trên cạnh AB lấy các điểm D và E sao cho AD = DE = EB. Từ D, E kẻ các đường thẳng song song với BC, cắt cạnh AC theo thứ tự tại M và N. Tính theo a độ dài các đoạn thẳng DM và EN.

Xem lời giải »


Câu 8:

Cho tam giác đều ABC. Trên tia đối của tia CB lấy điểm D. Trong nửa mặt phẳng bờ BC chứa điểm A kẻ các tia Cx // AB, Dy // AC. Hai tia này cắt nhau tại E. Chứng minh rằng:

a) Tam giác ECD đều.

b) AD = BE.

Xem lời giải »