X

Các dạng bài tập Toán lớp 12

Cho tam giác đều ABC. Trên tia đối của tia CB lấy điểm D. Trong nửa mặt phẳng bờ BC chứa điểm A kẻ các tia Cx // AB, Dy // AC. Hai tia này cắt nhau tại E. Chứng minh rằng: a) Tam giác ECD đều


Câu hỏi:

Cho tam giác đều ABC. Trên tia đối của tia CB lấy điểm D. Trong nửa mặt phẳng bờ BC chứa điểm A kẻ các tia Cx // AB, Dy // AC. Hai tia này cắt nhau tại E. Chứng minh rằng:

a) Tam giác ECD đều.

b) AD = BE.

Trả lời:

Cho tam giác đều ABC. Trên tia đối của tia CB lấy điểm D. Trong nửa mặt phẳng bờ BC chứa điểm A kẻ các tia Cx // AB, Dy // AC. Hai tia này cắt nhau tại E. Chứng minh rằng: a) Tam giác ECD đều. b) AD = BE. (ảnh 1)

Cho tam giác đều ABC. Trên tia đối của tia CB lấy điểm D. Trong nửa mặt phẳng bờ BC chứa điểm A kẻ các tia Cx // AB, Dy // AC. Hai tia này cắt nhau tại E. Chứng minh rằng: a) Tam giác ECD đều. b) AD = BE. (ảnh 2)

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho BH=13HC. Điểm M di động nằm trên BC sao cho BM=xBC. Tìm x sao cho độ dài của MA+GC đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 2:

Cho tam giác ABC có A^=70°, các đường phân giác BD, CE cắt nhau ở I. Tính BIC^

Cho tam giác ABC có góc A= 70 độ, các đường phân giác BD, CE cắt nhau ở I (ảnh 1)

Xem lời giải »


Câu 3:

Cho tam giác ABC có C^=90°. Kẻ đường cao CH. Biết HB - HA = AC. Tính A^,B^.

Xem lời giải »


Câu 4:

Cho tam giác ABC có góc C nhọn, AH và BK là hai đường cao, HK = 7, diện tích tứ giác ABHK bằng 7 lần diện tích tam giác CHK. Khi đó bán kính đường tròn ngoại tiếp tam giác ABC bằng?

Xem lời giải »


Câu 5:

Cho tam giác ABC vuông tại A trung tuyến AD. Kẻ DM vuông góc AB (M thuộc AB), kẻ DN vuông góc AC (N thuộc AC).

a) ANDM là hình gì?

b) Lấy E đối xứng Dqua M. Chứng minh rằng AE//MN.

c) D nằm ở vị trí nào trên cạnh BC để ANDM là hình chữ nhật.

Xem lời giải »


Câu 6:

Cho tam giác ABC vuông cân tại A và điểm M thuộc cạnh BC. Chứng minh MB2 + MC2 = 2MA2.

Xem lời giải »


Câu 7:

Cho tam giác ABC vuông cân tại A. Biết AB = AC = 4cm.

a, Tính BC.

b, Từ A kẻ AD vuông góc BC tại D. Chứng minh D là trung điểm BC.

c, Từ D kẻ DE vuông góc AC tại E. Chứng minh tam giác AED vuông cân.

d, Tính AD.

Xem lời giải »


Câu 8:

Cho ABC vuông cân tại A. Trên tia đối của tia CA lấy điểm F, trên AB lấy điểm E sao cho BE = CF. Vẽ hình bình hành BEFD.

a) Chứng minh DC vuông góc với BC.

 

b) Gọi I là giao điểm EF và BC. Chứng minh AI=12DB.

Xem lời giải »