Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là phân giác của
Câu hỏi:
Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là phân giác của .
a) Tính cạnh AH, AC biết HB = 18cm, HC = 8cm.
b) Chứng minh tam giác ADC cân và HD.BC = BD.DC.
c) Gọi E, F lần lượt là hình chiếu của H trên AB và AC.
Chứng minh SAEF = SABC.(1 - cos2B).sin2C.
Trả lời:
a) Ta có tam giác ABC vuông tại A, AH ⊥ BC
Nên: AH2 = BH.CH = 18.8 = 144
⇒ AH = 12cm.
AC =
b) Vì AD là phân giác ⇒
⇒
Suy ra: tam giác CAD cân tại C ⇒ CA = CD
Vì AD là phân giác ⇒
⇒ HD.BC = BD.AC = DB.CD
c) Ta có: HE ⊥ AB, HF ⊥ AC, AB ⊥ AC
Nên AEHF là hình chữ nhật
⇒ AH = EF
⇒
Mà
⇒ ∆AFE ∽ ∆ABC (g.g)
⇒
Ta có: 1 – cos2B = sin2B
⇒ (1 – cos2B)sin2C = sin2Bsin2C = (sinBsinC)2
=
⇒
⇒ SAEF = SABC.(1 - cos2B).sin2C.