Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC
Câu hỏi:
Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. Kẻ một đường thẳng d nằm giữa hai tia AB, AO và đi qua A cắt đường tròn (O) tại E, F (E nằm giữa A, F).
1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn.
2. Gọi H là giao điểm của AD và BC. Chứng minh OH.OA = OE2.
3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh SF là tiếp tuyến của đường tròn (O).
Trả lời:
1) Theo giả thiết ta có: AB và AC là tiếp tuyến của (O) nên: \[\left\{ \begin{array}{l}AB \bot OB\\AC \bot OC\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat {ABO} = 90^\circ \\\widehat {ACO} = 90^\circ \end{array} \right.\]
Xét tứ giác ABOC có: \[\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \]
Mà 2 góc này là hai góc đối diện
Nên ABOC là tứ giác nội tiếp
Vậy A, B, O, C cùng nằm trên 1 đường tròn.
2) Gọi H là giao điểm AO và BC
Ta có: AB = AC (tính chất 2 tiếp tuyến cắt nhau)
Nên A thuộc đường trung trực của BC (1)
OB = OC = R nên O thuộc đường trung trực của BC (2)
Từ (1), (2): OA là đường trung trực của BC
⇒ OA ⊥ BC = {H}
Áp dụng hệ thức lượng cho tam giác ABO vuông tại B có đường cao BH, ta có:
OB2 = OH.OA
Lại có OB = OE = R
Nên: OE2 = OH.OA
3) Theo phần b ta có: OE2 = OH.OA ⇒ \(\frac{{OE}}{{OH}} = \frac{{OA}}{{OE}}\)
Xét tam giác OEA và tam giác OHE có:
Chung \(\widehat O\)
\(\frac{{OE}}{{OH}} = \frac{{OA}}{{OE}}\)
⇒ ∆OEA ∽ ∆OHE (c.g.c)
⇒ \(\widehat {OEA} = \widehat {OHE}\)(2 góc tương ứng)
Lại có: \(\left\{ \begin{array}{l}\widehat {FEO} = 180^\circ - \widehat {OEA}\\\widehat {EHA} = 180^\circ - \widehat {OHE}\end{array} \right. \Rightarrow \widehat {FEO} = \widehat {EHA}\)
Mặt khác:
\(\left\{ \begin{array}{l}\widehat {SOE} = 90^\circ - \widehat {FEO}\\\widehat {SHE} = 90^\circ - \widehat {EHA}\end{array} \right. \Rightarrow \widehat {SOE} = \widehat {SHE}\)
Xét tứ giác SOHE có: \(\widehat {SOE} = \widehat {SHE}\) cùng chắn cung SE
Suy ra: SOHE nội tiếp
⇒ \(\widehat {SEO} = \widehat {SHO} = 90^\circ \)
Xét tam giác SFO và tam giác SEO có:
SO chung
SF = SE
OF = OE = R
⇒ ∆SFP = ∆SEO (c.c.c)
⇒ \(\widehat {SFO} = \widehat {SEO} = 90^\circ \)
⇒ SF ⊥ OF tại F
Vậy SF là tiếp tuyến của (O).