Cho tan alpha = 2. Tính giá trị của biểu thức G = (2 sin alpha + cos alpha) / (cos alpha
Câu hỏi:
Cho tanα = 2. Tính giá trị của biểu thức \(G = \frac{{2\sin \alpha + cos\alpha }}{{cos\alpha - 3\sin \alpha }}\).
A. G = 1
B. \(G = \frac{{ - 4}}{5}\)
C. \(G = \frac{{ - 6}}{5}\)
D. G = –1.
Trả lời:
Đáp án đúng là: D
Vì tanα = 2 nên cosα ≠ 0
Ta có: \({\rm{G}} = \frac{{2\sin \alpha + \cos \alpha }}{{\cos \alpha - 3\sin \alpha }} = \frac{{2\frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }}}}{{\frac{{\cos \alpha }}{{\cos \alpha }} - 3\frac{{\sin \alpha }}{{\cos \alpha }}}} = \frac{{2\tan \alpha + 1}}{{1 - 3\tan \alpha }}\)
Thay tanα = 2 ta được: \({\rm{G}} = \frac{{2.2 + 1}}{{1 - 3.2}} = - \frac{5}{5} = - 1\)
Vậy đáp án cần chọn là: D.