X

Các dạng bài tập Toán lớp 12

Cho tứ diện SABC và hai điểm M, N lần lượt thuộc các cạnh SA, SB sao cho


Câu hỏi:

Cho tứ diện SABC và hai điểm M, N lần lượt thuộc các cạnh SA, SB sao cho SMAM= 12, SNBN= 2. Mặt phăng (P) đi qua hai điểm M, N và song song với cạnh SC, cắt AC, BC lần lượt tại L, K. Tính tỉ số thể tích VSCMNKLVSABC

A. VSCMNKLVSABC = 49

B. VSCMNKLVSABC = 13

C. VSCMNKLVSABC = 23

D. VSCMNKLVSABC = 14

Trả lời:

Chọn A

Chia khối đa diện SCMNKL bởi mặt phẳng (NLC) được hai khối chóp N. SMLC và N. LKC. Vì SC song song với (MNKL) nên SC // ML //NK

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB = a, BC = 2a, BD = a10. Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 600. Tính thể tích V của khối chóp S.ABCD theo a.

Xem lời giải »


Câu 2:

Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy (ABCD). Biết côsin của góc tạo bởi mặt phẳng (SCD) và (ABCD) bằng 21717 . Thể tích Vcủa khối chóp S.ABCD là:

Xem lời giải »


Câu 3:

Khối chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SC = a, cạnh SD thay đổi. Thể tích lớn nhất của khối chóp S.ABCD là:

Xem lời giải »


Câu 4:

Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. Khoảng cách từ A đến mặt phẳng (A'BC) bằng:

Xem lời giải »


Câu 5:

Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A'BC) bằng a6. Thể tích khối lăng trụ bằng

Xem lời giải »


Câu 6:

Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a và cạnh bên SA vuông góc với mặt phẳng đáy. Gọi E là trung điểm của cạnh CD. Biết thể tích của khối chóp S. ABCD bằng a33. Tính khoảng cách từ A đến mặt phẳng (SBE).

Xem lời giải »


Câu 7:

Cho khối chóp S. ABCD có đáy ABCD là tứ giác lồi, tam giác ABD đều cạnh a, tam giác BCD cân tại C và BCD^ = 1200 , SA  ABCD và SA=a. Mặt phẳng (P) đi qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại M, N, P. Tính thể tích khối chóp S. AMNP.

Xem lời giải »


Câu 8:

Cho khối chóp tứ giác S. ABCD. Mặt phẳng đi qua trọng tâm các tam giác SAB, SAC, SAD chia khối chóp này thành hai phần có thể tích là V₁ và V₂ (V₁ < V₂). Tính tỉ lệ V₁/V₂.

Xem lời giải »