Chứng minh rằng nếu chia hết cho 11 thì cũng chia hết cho 11 (biết rằng là số tự nhiên có hai chữ số; là số tự nhiên có 4 chữ số).
Câu hỏi:
Chứng minh rằng nếu chia hết cho 11 thì cũng chia hết cho 11 (biết rằng là số tự nhiên có hai chữ số; là số tự nhiên có 4 chữ số).
Trả lời:
Ta thấy: , lại có 99 ⋮ 11 nên
Suy ra:
Vậy
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:
a)
b) Tứ giác OKME là hình chữ nhật.
c) P, O, N thẳng hàng và KE // PN.
Xem lời giải »
Câu 2:
Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức
Xem lời giải »
Câu 3:
Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).
Xem lời giải »
Câu 4:
Cho tam giác ABC. Hai điểm M và N di chuyển sao cho . Chứng minh MN luôn đi qua một điểm cố định.
Xem lời giải »
Câu 5:
Tìm 2 số tự nhiên a và b biết a - b = 84 , ƯCLN(a, b) = 12 .
Xem lời giải »
Câu 7:
Đội văn nghệ có 36 bạn, được xếp thành các hàng có số người bằng nhau. Hỏi có thể có những cách xếp hàng nào, biết mỗi hàng có từ 4 đến 12 bạn.
Xem lời giải »
Câu 8:
Tính nhanh: A = 1 - 3 + 5 - 7 + 9 - 11 + ... + 91 - 93 + 95 - 97 + 99.
Xem lời giải »