X

Các dạng bài tập Toán lớp 12

Chứng minh rằng với mọi số tự nhiên n thì (n + 2022)(n + 2023) chia hết cho 2


Câu hỏi:

Chứng minh rằng với mọi số tự nhiên n thì (n + 2022)(n + 2023) chia hết cho 2

Trả lời:

Có (n + 2022)(n + 2023) là 2 số tự nhiên liên tiếp (n ℕ).

 Luôn có 1 số chia hết cho 2

 (n + 2022)(n + 2023)` 2

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho x + y = 15. Tìm min, max B=x4+y3

Xem lời giải »


Câu 2:

Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27.

Xem lời giải »


Câu 3:

Cho x, y, z thỏa mãn đk x + y + z = a. Tìm GTNN của P=1+ax1+ay1+az

Xem lời giải »


Câu 4:

Cho x + 3y – 4 = 0, tính x3 - x2 + 9x2y - 9y2 + 27xy2 + 27y3 - 6xy

Xem lời giải »


Câu 5:

Cho 3 số tự nhiên a b c không chia hết cho 4. Khi chia a b c cho 4 thì có số dư khác nhau. Chứng minh a + b + c chia hết cho 2

Xem lời giải »


Câu 6:

Có 35 viên bi trong đó có 7 viên màu xanh 8 viên màu đỏ và 20 viên bi màu vàng vậy số bi màu xanh chiếm bao nhiêu phần của tổng số bi ?

Xem lời giải »


Câu 7:

Có 5 công nhân làm trong 6 giờ được 120 sản phẩm. Hỏi 4 công nhân làm trong bao nhiêu giờ thì được 96 sản phẩm? (mức làm mỗi người như nhau)

Xem lời giải »


Câu 8:

Có 6 học sinh sẽ được sắp xếp ngồi vào 6 chỗ đã được ghi số thứ tự trên 1 bàn dài.

1.Tìm số cách sắp xếp 6 học sinh này ngồi vào bàn.

2. Tìm số cách sắp xếp 6 học sinh này ngồi vào bàn sao cho 2 học sinh A và B không ngồi cạnh nhau.

Xem lời giải »