X

Các dạng bài tập Toán lớp 12

Có bao nhiêu số nguyên m để phương trình log 2 (3x^2 +3x+m+1)/(2^x2 -x+1)=x^2 -5x+2-m


Câu hỏi:

Có bao nhiêu số nguyên m để phương trình log23x2+3x+m+12x2-x+1=x2-5x+2-m có hai nghiệm phân biệt lớn hơn 1.

A. 3

B. Vô số

C. 2

D. 4

Trả lời:

Điều kiện: . Phương trình đã cho trở thành:

Xét hàm số  trên  

Do đó hàm số f (t) đồng biến trên D

Xét hàm số :  trên R có:

Dựa vào BBT ta thấy: phương trình (2) có hai nghiệm phân biệt lớn hơn 1 khi và chỉ khi:

do 

Đáp án cần chọn là: C.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm giá trị của a để phương trình 2+3x+1-a2-3x -4=0 có 2 nghiệm phân biệt thỏa mãn: x1-x2=log2+33, ta có a thuộc khoảng:

Xem lời giải »


Câu 2:

Tìm tập hợp tất cả các tham số m sao cho phương trình 4x2-2x+1-m.2x2-2x+1+3m-2=0 có 4 nghiệm phân biệt.

Xem lời giải »


Câu 3:

Có bao nhiêu số nguyên m thuộc -2020;2020 sao cho phương trình 4x-12-4m.2x2-2x+3m-2=0 có bốn nghiệm phân biệt?

Xem lời giải »


Câu 4:

Các giá trị thực của tham số m để phương trình: 12x+4-m.3x-m=0 có nghiệm thuộc khoảng (-1; 0) là

Xem lời giải »


Câu 5:

Hỏi có bao nhiêu giá trị m nguyên trong đoạn -2017;2017 để phương trình logmx=2logx+1 có nghiệm duy nhất?

Xem lời giải »


Câu 6:

Biết rằng phương trình log139x2+log3x281-7=0 có hai nghiệm phân biệt x1,x2. Tính x1.x2

Xem lời giải »


Câu 7:

Tìm m để phương trình mln(1-x)-lnx=m có nghiệm x0;1

Xem lời giải »


Câu 8:

Cho tham số thực a. Biết phương trình ex-e-x=2cosax có 5 nghiệm thực phân biệt. Hỏi phương trình ex-e-x=2cosax+4 có bao nhiêu nghiệm thực phân biệt

Xem lời giải »