Cho tham số thực a. Biết phương trình e^x -e^-x=2cosax
Câu hỏi:
Cho tham số thực a. Biết phương trình ex-e-x=2cosax có 5 nghiệm thực phân biệt. Hỏi phương trình ex-e-x=2cosax+4 có bao nhiêu nghiệm thực phân biệt
A. 5
B. 6
C. 10
D. 11
Trả lời:
Ta có:

Giả sử x0 là nghiệm của phương trình
(*), thì x0≠0 và 2x0 là nghiệm của (1) và -2x0 là nghiệm của (2) hoặc ngược lại.
Phương trình (*) có 5 nghiệm nên hai phương trình (1), (2) có 5 nghiệm phân biệt.
Vậy phương trình
có 10 nghiệm phân biệt.
Đáp án cần chọn là: C.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm giá trị của a để phương trình (2+√3)x+(1-a)(2-√3)x -4=0 có 2 nghiệm phân biệt thỏa mãn: x1-x2=log2+√33, ta có a thuộc khoảng:
Xem lời giải »
Câu 2:
Tìm tập hợp tất cả các tham số m sao cho phương trình 4x2-2x+1-m.2x2-2x+1+3m-2=0 có 4 nghiệm phân biệt.
Xem lời giải »
Câu 3:
Có bao nhiêu số nguyên m thuộc [-2020;2020] sao cho phương trình 4(x-1)2-4m.2x2-2x+3m-2=0 có bốn nghiệm phân biệt?
Xem lời giải »
Câu 4:
Các giá trị thực của tham số m để phương trình: 12x+(4-m).3x-m=0 có nghiệm thuộc khoảng (-1; 0) là
Xem lời giải »
Câu 5:
Giả sử m là số thực sao cho phương trình log23x-(m+2)log3x+3m-2=0 có hai nghiệm x1,x2 phân biệt thỏa mãn x1.x2=9.
Khi đó m thỏa mãn tính chất nào sau đây?
Xem lời giải »
Câu 6:
Cho phương trình log22x-(5m+1)log2x+4m2+m=0. Biết phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn x1+x2=165. Giá trị của |x1-x2| bằng:
Xem lời giải »
Câu 7:
Cho phương trình mln2(x+1) -(x+2-m)ln(x+1)-x-2=0 . Tập tất cả các giá trị của tham số m để phương trình (1) có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn là khoảng . Khi đó, a thuộc khoảng
Xem lời giải »
Câu 8:
Cho x, y là các số thực dương thỏa mãn . Giá trị lớn nhất của biểu thức bằng:
Xem lời giải »