X

Các dạng bài tập Toán lớp 12

Có tồn tại hay không một dãy gồm 2019 số tự nhiên liên tiếp mà các số đó đều là hợp số?


Câu hỏi:

Có tồn tại hay không một dãy gồm 2019 số tự nhiên liên tiếp mà các số đó đều là hợp số?

Trả lời:

Có tồn tại. 

Chứng minh:

Đặt: A =  2 . 3 . 4... 2019. 2020

Xét 2019 số tự nhiên liên tiếp:

A + 2; A + 3; ... ; A + 2020.

Ta có: A + 2 = 2 . 3 . 4... 2019. 2020 + 2 = 2 . ( 3 . 4... 2019. 2020 + 1 ) là hợp số.

A + 3 = 2 . 3 . 4... 2019. 2020 + 3 = 3 . ( 2 . 4... 2019. 2020 + 1 ) là hợp số.

 ...

A + 2020 = 2 . 3 . 4... 2019. 2020 + 2020 = 2020 . ( 2 . 3.  4... 2019 + 1 ) là hợp số.

Vậy tồn tại dãy số gồm 2019 số tự nhiên liên tiếp là hợp số. 

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho x + y = 15. Tìm min, max B=x4+y3

Xem lời giải »


Câu 2:

Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27.

Xem lời giải »


Câu 3:

Cho x, y, z thỏa mãn đk x + y + z = a. Tìm GTNN của P=1+ax1+ay1+az

Xem lời giải »


Câu 4:

Cho x + 3y – 4 = 0, tính x3 - x2 + 9x2y - 9y2 + 27xy2 + 27y3 - 6xy

Xem lời giải »


Câu 5:

Chứng minh đẳng thức sau: sinx+cosxsin3x=cot3x+cot2xcotx+1

Xem lời giải »


Câu 6:

Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc (O). Tiếp tuyến tại A của (O) cắt đường thẳng BC tại D. Gọi E là trung điểm của AD. Chứng minh EC là tiếp tuyến của (O).

Xem lời giải »


Câu 7:

Chứng minh tam giác ABC có ha = 2R.sinB.sinC

Xem lời giải »


Câu 8:

Chứng minh n5 – n chia hết cho 30 với mọi số nguyên n.

Xem lời giải »