X

Các dạng bài tập Toán lớp 12

Chứng minh n^5 – n chia hết cho 30 với mọi số nguyên n.


Câu hỏi:

Chứng minh n5 – n chia hết cho 30 với mọi số nguyên n.

Trả lời:

n5 – n = n(n4 – 1)

= n(n2 – 1)(n2 + 1)

= n(n – 1)(n + 1)(n2 + 1)

= n(n – 1)(n + 1)(n2 – 4 + 5)

= n(n – 1)(n + 1)(n – 2)(n + 2) + 5n(n – 1)(n +1)

Vì n(n – 1)(n + 1)(n – 2)(n + 2) là tích của 5 số nguyên liên tiếp nên n(n – 1)(n + 1)(n – 2)(n + 2) chia hết cho 5

Và 5n(n – 1)(n +1) chia hết cho 5

Nên: n(n – 1)(n + 1)(n – 2)(n + 2) + 5n(n – 1)(n +1) 5 (1)

Lại có: n(n – 1)(n + 1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Suy ra: n(n – 1)(n + 1)(n – 2)(n + 2) + 5n(n – 1)(n +1) 6 (2)

Từ (1) và (2) ta có: n(n – 1)(n + 1)(n – 2)(n + 2) + 5n(n – 1)(n +1) 30

Vậy n5 – n chia hết cho 30 với mọi số nguyên n.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho x + y = 15. Tìm min, max B=x4+y3

Xem lời giải »


Câu 2:

Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27.

Xem lời giải »


Câu 3:

Cho x, y, z thỏa mãn đk x + y + z = a. Tìm GTNN của P=1+ax1+ay1+az

Xem lời giải »


Câu 4:

Cho x + 3y – 4 = 0, tính x3 - x2 + 9x2y - 9y2 + 27xy2 + 27y3 - 6xy

Xem lời giải »


Câu 5:

Nếu ab chia hết cho c và ƯCLN (a,c) = 1 thì b chia hết cho c

Xem lời giải »


Câu 6:

Cho (O) và A là điểm nằm ngoài (O). Qua A vẽ tiếp tuyến AB, AC với (O) với B,C là tiếp điểm. OA cắt BC tại DA

a) Chứng minh OA là đường trung trực BC.

b) Chứng minh OD.DA = BD2

c) Vẽ đường kính BE, AE cắt (O) tại F. Gọi G là trung điểm của EF, đường thẳng OG cắt đường thẳng BC tại H. Chứng minh OD.OA = OG.OH

d) Chứng minh EH là tiếp tuyến của (O)

Xem lời giải »


Câu 7:

Chứng tỏ rằng số có dạng aaa¯ bao giờ cũng chia hết cho 37.

Xem lời giải »


Câu 8:

Chứng minh rằng: Nếu p là một số nguyên tố lớn hơn 3 và 2p + 7 cũng là số nguyên tố thì 4p + 7 là một hợp số.

Xem lời giải »