X

Các dạng bài tập Toán lớp 12

Giả sử AB là một dây cung của đường tròn (O). Trên cung nhỏ AB lấy các điểm C và D sao


Câu hỏi:

Giả sử AB là một dây cung của đường tròn (O). Trên cung nhỏ AB lấy các điểm C và D sao cho AC=BD. Chứng minh AB và CD song song.

Trả lời:

Giả sử AB là một dây cung của đường tròn (O). Trên cung nhỏ AB lấy các điểm C và D sao (ảnh 1)

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho x + y = 15. Tìm min, max B=x4+y3

Xem lời giải »


Câu 2:

Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27.

Xem lời giải »


Câu 3:

Cho x, y, z thỏa mãn đk x + y + z = a. Tìm GTNN của P=1+ax1+ay1+az

Xem lời giải »


Câu 4:

Cho x + 3y – 4 = 0, tính x3 - x2 + 9x2y - 9y2 + 27xy2 + 27y3 - 6xy

Xem lời giải »


Câu 5:

Cho 10a2 – 3b2 + ab = 0 với b > a > 0. Tính M=2ab3ab+5ba3a+b.

Xem lời giải »


Câu 6:

Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.

a) Chứng minh E và F đối xứng với nhau qua AB.

b) Chứng minh tứ giác MEBF là hình thoi.

c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.

Xem lời giải »


Câu 7:

Cho abc¯deg¯ chia hết cho 7. Chứng minh abcdeg chia hết cho 7.

Xem lời giải »


Câu 8:

Cho hình bình hành ABCD có A^=120°. Tia phân giác của D^ qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Xem lời giải »