Tìm thể tích V của vật tròn xoay sinh ra bởi đường tròn x^2+(y-3)^2=4
Câu hỏi:
Tìm thể tích V của vật tròn xoay sinh ra bởi đường tròn khi quay quanh trục Ox
A.
B.
C.
D.
Trả lời:
Câu hỏi:
Tìm thể tích V của vật tròn xoay sinh ra bởi đường tròn khi quay quanh trục Ox
A.
B.
C.
D.
Trả lời:
Câu 1:
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường xung quanh trục Ox được tính theo công thức nào sau đây?
Câu 2:
Tính thể tích V của một vật tròn xoay tạo thành khi quay hình phẳng (H) giới hạn bởi các đường quanh trục Ox
Câu 3:
Trong mặt phẳng Oxy, cho hình phẳng (H) giới hạn bởi các đường và y = x. Thể tích của vật thể tròn xoay khi quay hình (H) quanh trục hoành một vòng bằng:
Câu 4:
Cho vật thể V được giới hạn bởi hai mặt phẳng x=a và x=b (a<b), mặt phẳng vuông góc với trục Ox cắt V theo thiết diện S(x). Thể tích của V được tính bởi:
Câu 5:
Trong Công viên Toán học có những mảnh đất hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp nhất trong toán học. Ở đó có mảnh đất mang tên Bernoulli, nó được tạo thành từ đường Lemniscate có phương trình trong hệ tọa độ Oxy là như hình vẽ bên. Tính diện tích S của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ trục tọa độ Oxy tương ứng với chiều dài 1 mét.
Câu 6:
Sân trường THPT Chuyên Hà Giang có một bồn hoa hình tròn có tâm O. Một nhóm học sinh lớp 12 được giao thiết kế bồn hoa, nhóm này chia bồn hoa thành bốn phần, bởi hai đường Parabol có cùng đỉnh O và đối xứng nhau qua O. Hai đường Parabol này cắt đường tròn tại bốn điểm A, B, C, D tạo thành một hình vuông có cạnh bằng 4m (như hình vẽ). Phần diện tích dùng để trồng hoa, phần diện tích dùng để trồng cỏ (Diện tích được làm tròn đến hàng phần trăm). Biết kinh phí trồng hoa là , kinh phí trồng cỏ là . Hỏi cả trường cần bao nhiêu tiền để trồng bồn hoa đó? (Số tiền làm tròn đến hàng chục nghìn).
Câu 7:
Cho hàm số (a=1) có đồ thị (C), biết rằng (C) đi qua A (−1; 0) , tiếp tuyến d tại A của (C) và hai đường thẳng x = 0; x = 2 có diện tích bằng (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = −1; x = 0 có diện tích bằng
Câu 8:
Cho hàm số có đồ thị (C) cắt trục hoành tại 4 điểm phân biệt. Gọi là diện tích hình phẳng giới hạn bởi trục hoành và phần đồ thị (C) nằm phía trên trục hoành, là diện tích hình phẳng giới hạn bởi trục hoành và phần đồ thị (C) nằm phía dưới trục hoành. Biết rằng . Giá trị của m là