X

Các dạng bài tập Toán lớp 12

Tính mô-đun của số phức z, biết z^3 + 12i = z ngang


Câu hỏi:

Tính mô-đun của số phức z, biết  và z có phần thực dương.

A. 2

B. 1

C.3

D. 5

Trả lời:

Chọn D.

Giả sử z = x + yi (x, y R); từ giả thiết :

Nên ( x + yi) 3+ 12i = x - yi

Hay x3 - 3xy2+ ( 3x2y - y3 +12) i = x - yi

Ta có hệ phương trình là  x3 - 3xy2 = x   (1)  và 3x2y - y3 + 12 = - y  ( 2)

Do x > 0 nên từ (1) x2 = 3y2+ 1. Thế vào (2) ta được:

3( 3y2 + 1) y - y3 + 12 = -y

Hay 2y3+ y + 3 = 0    (3)

Giải phương trình (3) ta được y = -1; x2 = 4. Do x > 0n x = 2.

Vậy z = 2 - i và 

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trên mặt phẳng tọa độ Oxy, tìm tập hợp các điểm biểu diễn các số phức z  thỏa mãn điều kiện |z – 2| + |z + 2| = 10.

Xem lời giải »


Câu 2:

Cho số phức z  thỏa mãn |z + 2| + |z – 2| = 8. Trong mặt phẳng phức tập hợp những điểm M biểu diễn cho số phức z  là?

Xem lời giải »


Câu 3:

Tìm nghiệm của phương trình:

Xem lời giải »


Câu 4:

Tìm nghiệm của phương trình: ( z + 3 - i)2 - 6( z + 3 - i) + 13 = 0

Xem lời giải »


Câu 5:

Giải phương trình sau: ( z2 + z) 2 + 4( z2+ z) - 12 = 0

Xem lời giải »


Câu 6:

Giải phương trình sau: ( z2 + 3z + 6) 2 + 2z( z2 + 3z + 6) - 3z2 = 0

Xem lời giải »


Câu 7:

Cho phương trình: ( z2 - z) ( z + 3) (z + 2) = 10 .Tính tổng tất cả các phần thực của các nghiệm phương trình trên.

Xem lời giải »


Câu 8:

Cho A; B; C tương ứng là các điểm trong mặt phẳng phức biểu diễn các số phức z1 = 1 + 2i; z2 = -2 + 5i ; z3 = 2 + 4i . Số phức z biểu diễn bởi điểm D sao cho tứ giác ABCD là hình bình hành là

Xem lời giải »