X

Các dạng bài tập Toán lớp 12

Trong không gian Oxyz, cho đường thẳng d: x-2 / 3 = y +1 / 1= z+5 / -1


Câu hỏi:

Trong không gian Oxyz, cho đường thẳng d:x-23=y+11=z+5-1 và mặt phẳng (P):2x-3y+z-6=0. Phương trình nào dưới đây là phương trình của đường thẳng nằm trong mặt phẳng (P), cắt và vuông góc với (d)?

Trả lời:

Chọn A

Phương trình tham số của 

Gọi M = d (P) nên 2(2 + 3t) -3(-1 + t) -5 - t - 6 = 0 t = 2 => M (8 ; 1 ; -7)

VTCP của Δ u=ud; n(P)= -2;-5;-11=-12;5;11

Δ đi qua M có VTCP có tọa độ là (2; 5; 11)  nên có phương trình: x-82=y-15=z+711

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và đường thẳng :x-6-3=y-22=z-22. Phương trình mặt phẳng (P) đi qua điểm M (4;3;4) song song với đường thẳng ∆ và tiếp xúc với mặt cầu (S) là:

Xem lời giải »


Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho các điểm M (2;2; -3) và N (-4; 2; 1). Gọi Δ là đường thẳng đi qua M, nhận vecto u=a, b, c  làm vectơ chỉ phương và song song với mặt phẳng (P): 2x + y + z = 0 sao cho khoảng cách từ N đến Δ đạt giá trị nhỏ nhất. Biết |a|, |b| là hai số nguyên tố cùng nhau. Khi đó |a| + |b| + |c| bằng:

Xem lời giải »


Câu 3:

Trong không gian Oxyz, cho hai điểm A (1;0;0), B (0;0;2) mặt cầu (S): x²+y²+z²-2x-2y+1=0. Hỏi có tất cả bao nhiêu mặt phẳng chứa hai điểm A, B và tiếp xúc với (S).

Xem lời giải »


Câu 4:

Trong không gian Oxyz cho A (1;2;-1), B (3;1;-2), C (2;3;-3) và mặt phẳng (P): x-2y+2z-3=0. M (a;b;c) là điểm thuộc mặt phẳng (P) sao cho biểu thức MA²+MB²+MC² có giá trị nhỏ nhất. Xác định a+b+c.

Xem lời giải »