Trong không gian Oxyz, cho hai đường thẳng d1: x-1/2 = y/-1
Câu hỏi:
Trong không gian Oxyz, cho hai đường thẳng và . Đường vuông góc chung của và lần lượt cắt tại A và B. Diện tích tam giác OAB bằng:
A.
B.
C.
D.
Trả lời:
Câu hỏi:
Trong không gian Oxyz, cho hai đường thẳng và . Đường vuông góc chung của và lần lượt cắt tại A và B. Diện tích tam giác OAB bằng:
A.
B.
C.
D.
Trả lời:
Câu 1:
Trong không gian tọa độ Oxyz, cho mặt cầu (S): và mặt phẳng . Tìm m để (P) cắt (S) theo giao tuyến là một đường tròn bán kính lớn nhất.
Câu 2:
Trong không gian với hệ tọa độ Oxyz, gọi I(a;b;c) là tâm mặt cầu đi qua điểm A(1;-1;4) và tiếp xúc với tất cả các mặt phẳng tọa độ. Tính P=a-b+c
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(-1;0;1), B(3;2;1). Gọi C(5;3;7) thỏa mãn MA = MB và MB + MC đạt giá trị nhỏ nhất. Tính P = a + b + c
Câu 4:
Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng , và . Một đường thẳng d thay đổi cắt ba mặt phẳng (P); (Q); (R) lần lượt tại A, B, C. Đặt . Tìm giá trị nhỏ nhất của T.
Câu 5:
Trong không gian Oxyz, cho đường thẳng và hai điểm . Gọi là đường thẳng qua A, vuông góc với d sao cho khoảng cách từ B đến là nhỏ nhất. Gọi là một vec to chỉ phương của . Khi đó, bằng:
Câu 6:
Trong không gian Oxyz, cho 2 điểm A(1;2;-3), M(-2;-2;1) và đường thẳng . là đường thẳng đi qua M và vuông góc với đường thẳng d đồng thời cách A một khoảng lớn nhất, khi đó đi qua điểm nào trong các điểm sau:
Câu 7:
Trong không gian Oxyz, cho M(-1;3;4), mặt phẳng (P) đi qua M cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho M là trực tâm tam giác ABC. Thể tích khối tứ diện OABC bằng:
Câu 8:
Trong không gian Oxyz, cho 3 điểm và mặt cầu . Điểm M thuộc mặt cầu (S) sao cho tổng đạt giá trị nhỏ nhất, khi đó, độ dài vec tơ là: