X

Các dạng bài tập Toán lớp 12

Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(1;0;0), B(0;1;0), C(0;0;1), D(0;0;0)


Câu hỏi:

Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(1;0;0), B(0;1;0), C(0;0;1), D(0;0;0). Hỏi có bao nhiêu điểm cách đều 4 mặt phẳng (ABC), (CDA), (BCD), (DAB).

A. 4

B. 5

C. 1

D. 8

Trả lời:

Chọn D

Gọi điểm cần tìm là M (x0y0z0)

Phương trình mặt phẳng (ABC) là: 

Phương trình mặt phẳng (BCD) là: x = 0

Phương trình mặt phẳng (CDA) là: y = 0

Phương trình mặt phẳng (DAB) là: z= 0

Ta có M cách đều 4 mặt phẳng (ABC), (CDA), (BCD), (DAB) nên:

Ta có các trường hợp sau:

Vậy có 8 điểm M thỏa mãn bài toán.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.

Xem lời giải »


Câu 2:

Trong không gian Oxyz, cho ba điểm A(0;0;-1), B(-1;1;0), C(1;0;1). Tìm điểm M sao cho 3MA+ 2MB- MC2 đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 3:

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C (0;0;c), trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I (1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị lớn nhất. Khi đó các số a, b, c thỏa mãn đẳng thức nào sau đây?

Xem lời giải »


Câu 4:

Cho tứ diện ABCD có BD = 2, hai tam giác ABD, BCD có diện tích lần lượt là 6 và 10. Biết thể tích của tứ diện ABCD bằng 16, tính số đo góc giữa hai mặt phẳng (ABD) và (BCD).

Xem lời giải »


Câu 5:

Trong không gian Oxyz, cho tứ diện S.ABC có S(0;0;1), A(1;0;1), B(0;1;1), C (0;0;2). Hỏi tứ diện S.ABC có bao nhiêu mặt phẳng đối xứng?

Xem lời giải »


Câu 6:

Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình là: x2+y2+z2-2x-2y-6z+7=0.

Cho ba điểm A, M, B nằm trên mặt cầu (S) sao cho góc AMB = 90°. Diện tích tam giác AMB có giá trị lớn nhất bằng?

Xem lời giải »


Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(2;1;3), B(1;-1;2), C(3;-6;1). Điểm M(x;y;z) thuộc mặt phẳng (Oyz) sao cho MAMBMC2 đạt giá trị nhỏ nhất. Tính giá trị của biểu thức P = x+y+z

Xem lời giải »


Câu 8:

Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại A và B. Ba đỉnh A(1;2;1), B(2;0;-1), C(6;1;0). Hình thang có diện tích bằng 6√2. Giả sử đỉnh D(a;b;c), tìm mệnh đề đúng?

Xem lời giải »