X

Các dạng bài tập Toán lớp 12

Vị trí tương đối của hai mặt cầu: x^2 + y^2 + z^2 + 2x - 2y - 2z - 7 = 0 và


Câu hỏi:

Vị trí tương đối của hai mặt cầu: x2 + y2 + z2 + 2x - 2y - 2z - 7 = 0 và x2 + y2 + z2 + 2x + 2y + 4z + 5 = 0 là:

A. ở ngoài nhau

B. tiếp xúc

C. cắt nhau

D. chứa nhau

Trả lời:

Đáp án C

Mặt cầu: x2 + y2 + z2 + 2x - 2y – 2z – 7 = 0 có tâm I(-1; 1;1) và R = 10

Mặt cầu: x2 + y2 + z2 + 2x + 2y + 4z + 5= 0 có tâm I’( -1; -1; -2) và R’ = 1

II' = -1--12+-1-12+-2-12=13<10+1=R+R'

Do đó, hai mặt cầu này cắt nhau.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian Oxyz, cho hai vectơ a = (1; -2; 2), b = (-2; m - 3; m). Với những giá trị nào của m thì hai vectơ a và b có độ dài bằng nhau?

Xem lời giải »


Câu 2:

Trong không gian Oxyz, cho điểm G(1;2;3) là trọng tâm của tam giác ABC trong đó A thuộc trục Ox, B thuộc trục Oy, C thuộc trục Oz. Tọa độ các điểm A, B, C là:

Xem lời giải »


Câu 3:

Trong không gian Oxyz, ba điểm nào dưới đây lập thành ba đỉnh của một tam giác?

Xem lời giải »


Câu 4:

Cho hai vectơ a, b thay đổi nhưng luôn thỏa mãn 

Giá trị lớn nhất của

Xem lời giải »


Câu 5:

Trong không gian Oxyz, cho A(1;0;-3), B(-3;-2;-5). Biết rằng tập hợp các điểm M trong không gian thỏa mãn đẳng thức AM2 + BM2 = 30 là một mặt cầu (S). Tìm tọa độ tâm I và bán kính R của (S).

Xem lời giải »


Câu 6:

Trong không gian Oxyz, cho hai điểm A(0;2;-4), B(-3;5;2). Tìm tọa độ điểm M sao cho biểu thức AM2+ 2BM2 đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 7:

Trong không gian Oxyz, cho mặt cầu (S) có phương trình là: (x - 1)2 + (y - 1)2 + (z - 3)2 = 4

Cho ba điểm A, M, B nằm trên mặt cầu (S) thỏa mãn điều kiện góc AMB = 90o. Diện tích tam giác AMB có giá trị lớn nhất là:

Xem lời giải »


Câu 8:

Trong không gian Oxyz, cho hai mặt cầu (S) và (S’) có tâm lần lượt là I(-1;2;3), I’(3;-2;1) và có bán kính lần lượt là 4 và 2. Cho điểm M di động trên mặt cầu (S), N di động trên mặt cầu (S’). Khi đó giá trị lớn nhất của đoạn thẳng MN bằng:

Xem lời giải »