Cách nhận dạng đồ thị hàm số bậc 3 cực hay - Toán lớp 12
Cách nhận dạng đồ thị hàm số bậc 3 cực hay
Với Cách nhận dạng đồ thị hàm số bậc 3 cực hay Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập nhận dạng đồ thị hàm số bậc 3 từ đó đạt điểm cao trong bài thi môn Toán lớp 12.
A. Phương pháp giải & Ví dụ
Các dạng đồ thị của hàm số bậc 3 y = ax3 + bx2 + cx + d (a ≠ 0)
Đồ thị hàm số có 2 điểm cực trị nằm 2 phía so với trục Oy khi ac < 0
Đồ thị hàm số bậc ba luôn nhận điểm uốn làm tâm đối xứng
Ví dụ minh họa
Ví dụ 1: Đường cong trong hình bên dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
A. y = x3 - 3x + 1.
B. y = -x3 + 3x2 + 1.
C. y = x3 - 3x2 + 3x + 1.
D. y = -x3 - 3x2 - 1.
Hướng dẫn
Nhìn dạng đồ thị thấy a > 0 , suy ra loại B, D.
Mặt khác hàm số không có cực trị nên loại A.
Chọn C.
Ví dụ 2: Cho hàm số bậc 3 có dạng: y = f(x) = ax3 + bx2 + cx + d.
Hãy chọn đáp án đúng?
A. Đồ thị (IV) xảy ra khi a > 0 và f'(x) = 0 có nghiệm kép.
B. Đồ thị (II) xảy ra khi a ≠ 0 và f'(x) = 0 có hai nghiệm phân biệt.
C. Đồ thị (I) xảy ra khi a < 0 và f'(x) = 0 có hai nghiệm phân biệt.
D. Đồ thị (III) xảy ra khi a > 0 và f'(x) = 0 vô nghiệm.
Hướng dẫn
Hàm số của đồ thị (II) có a < 0 nên điều kiện a ≠ 0 chưa đảm bảo. Do đó loại phương án B.
Hàm số của đồ thị (I) có a > 0 nên loại luôn phương án C.
Hàm số của đồ thị (IV) có a < 0 nên loại luôn phương án A.
Chọn D.
Ví dụ 3: Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ bên.
Mệnh đề nào dưới đây đúng?
A. a < 0,b > 0,c > 0,d > 0.
B. a < 0,b < 0,c = 0,d > 0.
C. a > 0,b < 0,c > 0,d > 0.
D. a < 0,b > 0,c = 0,d > 0.
Hướng dẫn
Từ hình dáng đồ thị ta suy ra hệ số a < 0,d > 0 loại đáp án C.
Ta có: y' = 3ax2 + 2bx + c
Vì hàm số đạt cực tiểu tại điểm x = 0 nên y'(0) = 0 ⇒ c = 0 loại đáp án A.
Khi đó: y' = 0 ⇔ 3ax2 + 2bx = 0 ⇔ x = 0 hoặc x = -2b/3a
Do hoành độ điểm cực đại dương nên -2b/3a > 0, mà a < 0 ⇒ b > 0.
Chọn D.
B. Bài tập vận dụng
Trong các câu hỏi dưới đây, hãy tìm hàm số có đồ thị tương ứng với đồ thị trong hình vẽ:
Bài 1:
A. y = -(1/3)x3 + 2x2 - 3x - 1/3
B. y = 1/3 x3 -3x2 + 4x - 1/3
C. y = x3 -6x2 + 9x - 1
D. y = 1/3x3 - 2x2 + 3x - 1/3
Lời giải:
Đáp án : D
Bài 2:
A. y = x3 - 3x2 + 3x + 1
B. y = x3 - 3x2 - 3x - 1
C. y = x3 - 3x2 + 3x - 1
D. y = -x3 + 3x2 - 3x - 1
Lời giải:
Đáp án : C
Bài 3:
A. y = x3 + 3x2 - 2
B. y = x3 - 3x2 - 2
C. y = -x3 - 3x2 - 2
D. y = -x3 + 3x2 - 2
Lời giải:
Đáp án : A
Bài 4:
A. y = x3 - 2
B. y = x3 - 3x- 2
C. y = -x3 + 3x- 2
D. y = -x3 - 3x
Lời giải:
Đáp án : B
Bài 5:
A. y = -x3 + 3x
B. y = x3 - 3x
C. y = 2x3 - 6x
D. y=-2x3 + 6x
Lời giải:
Đáp án : C
Bài 6:
A. y = -x3 + 2
B. y = -x3 + 3x + 2
C. y = -x3 - x + 2
D. y = -x3 + 1
Lời giải:
Đáp án : A
Bài 7:
A. y = -x3 + 3x + 1
B. y = x3 - 3x + 1
C. y = -x3 + 3x + 2
D. y = x3 + 3x + 1
Lời giải:
Đáp án : B
Bài 8:
A. y = x3 - 3x2 - 1
B. y = -x3 + 3x2 - 1
C. y = -x3 + 6x2 - 1
D. y = -x3 + 3x2 - 4
Lời giải:
Đáp án : B
Bài 9:
A. y = -x3 - 3x2 + 2
B. y = -x3 + 3x2 + 4
C. y = x3 - 3x2 + 2
D. y = x3 - 3x2 + 4
Lời giải:
Đáp án : D
Bài 10:
A. y = (x + 1)2(2 - x)
B. y = (x + 1)2(1 + x)
C. y = (x + 1)2(2 + x)
D. y = (x + 1)2(1 - x)
Lời giải:
Đáp án : A
Bài 11:
A. y = -x3
B. y = x3 - 3x
C. y = x4 - 4x2
D. y = x3 - 3x2
Lời giải:
Đáp án : B
Bài 12:
A. y = x3 - 3x
B. y = x3 - 3x2 + 3x - 1
C. y = -x3 + 3x
D. y = x3 + 3x
Lời giải:
Đáp án : A
Bài 13:
A. y = x3 - 3x+ 1
B. y = -x3 + 3x- 1
C. y = 2x3 - 6x+ 1
D. y = 2x3 - 3x2 + 1
Lời giải:
Đáp án : A
Bài 14:
A. y = -x3 + 3x + 1
B. y = -2x3 + 1
C. y = -1/3 x3 + 2x + 1
D. y = 2x3 + 1
Lời giải:
Đáp án : B
Bài 15: Cho hàm số y = x3 + ax + b có đồ thị như hình bên. Chọn khẳng định đúng:
A. a < 0,b < 0
B. a > 0,b < 0
C. a > 0,b > 0
D. a < 0,b > 0
Lời giải:
Đáp án : D
Bài 16: Cho hàm số y = 1/3x3 + bx2 + cx + d có đồ thị như hình bên. Chọn khẳng định đúng:
A. b < 0,c > 0,d > 0
B. b < 0,c > 0,d < 0
C. b > 0,c > 0,d < 0
D. b < 0,c < 0,d < 0
Lời giải:
Đáp án : B
Bài 17: Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình bên. Chọn khẳng định đúng:
A. a < 0,b > 0,c > 0,d > 0
B. a < 0,b < 0,c < 0,d > 0
C. a < 0,b < 0,c > 0,d > 0
D. a < 0,b > 0,c < 0,d > 0
Lời giải:
Đáp án : A