X

Các dạng bài tập Toán lớp 12

Cho 5 số nguyên dương đôi một phân biệt sao cho mỗi số trong


Câu hỏi:

Cho 5 số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương.

Trả lời:

Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một). Ta có:

K1 = \({2^{{a_1}}}{.3^{{b_1}}}\)

K2 = \({2^{{a_2}}}{.3^{{b_2}}}\)

K3 = \({2^{{a_3}}}{.3^{{b_3}}}\)

K4 = \({2^{{a_4}}}{.3^{{b_4}}}\)

K5 = \({2^{{a_5}}}{.3^{{b_5}}}\)

(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên)

Xét 4 tập hợp sau:

+ A là tập hợp các số có dạng 2m.3n (với m lẻ, n lẻ)

+ B là tập hợp các số có dạng 2m.3n (với m lẻ, n chẵn)

+ C là tập hợp các số có dạng 2m.3n (với m chẵn, n lẻ)

+ D là tập hợp các số có dạng 2m.3n (với m chẵn, n chẵn)

Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj

Ki = \({2^{{a_i}}}{.3^{{b_i}}}\); Kj = \({2^{{a_j}}}{.3^{{b_j}}}\)

Ki.Kj = \({2^{{a_i} + {a_j}}}{.3^{{b_i} + {b_j}}}\)

Vì Ki và Kj thuộc cùng 1 tập hợp

Suy ra: ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ

ai + aj và bi + bj đều chẵn

Ki.Kj = \({2^{{a_i} + {a_j}}}{.3^{{b_i} + {b_j}}}\)là số chính phương.

Vậy trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Xét xem dãy un = 3n – 1 có phải là cấp số nhân hay không? Nếu phải hãy xác định công bội.

Xem lời giải »


Câu 2:

Một vé xem phim có mức giá là 60000 đồng. Trong dịp khuyến mãi cuối năm 2018, số lượng người xem phim tăng lên 45% nên tổng doanh thu cũng tăng 8,75%. Hỏi rạp phim đã giảm giá mỗi vé bao nhiêu % so với giá bán ban đầu?

Xem lời giải »


Câu 3:

Tính giá trị của biểu thức: P = (x – 10)2 – x(x + 80) tại x = 0,87.

Xem lời giải »


Câu 4:

Tính giá trị biểu thức A = 100 – 99 + 98 – 97 + … + 4 – 3 + 2.

Xem lời giải »


Câu 5:

Cho tam giác ABC nhọn nội tiếp (O). Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK. Gọi M và N lần lượt là trung điểm của BC và AC. Chứng minh: MN DF và M là tâm đường tròn ngoại tiếp tam giác DEF.

Xem lời giải »


Câu 6:

Giải phương trình: \(\sqrt {{x^2} - 2x + 1} + \sqrt {{x^2} - 4x + 4} = 3\).

Xem lời giải »


Câu 7:

Cho tam giác ABC. Chứng minh rằng sinA + sinB + sinC ≤ \(\frac{{3\sqrt 3 }}{2}\).

Xem lời giải »


Câu 8:

Phân tích số 90 ra thừa số nguyên tố rồi tìm tập hợp các ước của nó.

Xem lời giải »