X

Các dạng bài tập Toán lớp 12

Cho 7 số tự nhiên khác nhau có tổng bằng 100. Chứng minh rằng trong 7 số luôn có 3 số mà tổng của chúng lớn hơn hoặc bằng 50.


Câu hỏi:

Cho 7 số tự nhiên khác nhau có tổng bằng 100. Chứng minh rằng trong 7 số luôn có 3 số mà tổng của chúng lớn hơn hoặc bằng 50.

Trả lời:

Gọi 7 số tự nhiên khác nhau là a, b, c, d, e, f, g

Giả sử các số theo thứ tự giảm dần a > b > c > d > e > f > g

Ta có: a + b + c + d + e + f + g = 100

Ta sẽ đi chứng minh a + b + c ≥ 50 (*)

Nếu c > 15 thì a + b + c ≥ (c + 2) + (c + 1) + c ≥ 51

Nếu c ≤ 15 thì d + e + f + g ≤ (c – 1) + (c – 2) + (c – 3) + (c – 4) ≤ 50.

Vậy trong trường hợp nào thì (*) cũng đúng vì tổng của 7 số là 100.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A = (m; m + 3) và B (2; 6m + 1). Tìm m để A ∩ B = ∅.

Xem lời giải »


Câu 2:

Cho hai tập hợp khác rỗng A = [m – 1; 5) và B = [-3; 2m + 1]. Tìm m để A B.

Xem lời giải »


Câu 3:

Cho tam giác ABC cân tại A, đường cao AD, K là trung điểm của AD. Gọi I là hình chiếu của điểm D trên CK. Chứng minh rằng AIB^=90°.

Xem lời giải »


Câu 4:

Cho tam giác ABC có 3 góc nhọn. Chứng minh sinA + cosA + sinC + cosC > 2.

Xem lời giải »


Câu 5:

Cho biết cosα=23. Tính giá trị của P=cotα+3tanα2cotα+tanα.

Xem lời giải »


Câu 6:

Với x > 0 cho biểu thức A=1x+xx+1;B=xx+x;P=AB.

a) Rút gọn và tính giá trị P khi x = 4.

b) So sánh B với 1.

Xem lời giải »


Câu 7:

Cho biểu thức: A=1x+1+xxx với x > 0, x khác 1.

a) Rút gọn A

b) Tìm x để A = 2017.

Xem lời giải »


Câu 8:

Cho biểu thức B=aa33a+3a2a9 với a ≥ 0; a ≠ 9. Rút gọn B.

Xem lời giải »