Cho số phức z; w thỏa mãn |z – 1 + 2i| = |z + 5i|
Câu hỏi:
Cho số phức z; w thỏa mãn |z – 1 + 2i| = |z + 5i| ; w = iz + 20. Giá trị nhỏ nhất m của |w| là?
Trả lời:
Chọn B.
Gọi z = x + yi thì M(x; y) là điểm biểu diễn z.
Gọi A(1; -2) và B(0; -5), ta có tập hợp các điểm z thỏa mãn giả thiết đề bài là đường trung trực của AB có phương trình ∆: x + 3y +10 = 0.
Ta có |w| = |iz + 20| = |z – 20i| = CM với M là điểm biểu diễn số phức z và C(0; 20) .
Do đó
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hai số phức z1; z2 khác 0 thỏa mãn .Gọi A; B lần lượt là các điểm biểu diễn cho số phức z1; z2. Khi đó tam giác OAB là:
Xem lời giải »
Câu 2:
Cho số phức z thỏa mãn . Giá trị của |z| là ?
Xem lời giải »
Câu 4:
Số nghiệm của phương trình với ẩn số phức z: 4z2 + 8|z|2 - 3 = 0 là:
Xem lời giải »
Câu 5:
Xét các số phức z thỏa mãn thiết | z + 2 - i| + | z - 4 - 7i|= . Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của |z – 1 + i|. Tính P = m + M.
Xem lời giải »
Câu 6:
Cho số phức z thỏa mãn điều kiện |z -2 + 2i | + | z + 1 -3i | = . Hãy tìm giá trị lớn nhất, giá trị nhỏ nhất của |z + 1 + i|.
Xem lời giải »
Câu 7:
Cho số phức z thoả mãn |z – 1 + 3i| + |z + 2 – i| = 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của P = |2z + 1 + 2i|.
Xem lời giải »
Câu 8:
Cho số phức z thỏa mãn |z – 2 – 3i| = 1. Tìm giá trị lớn nhất của |z|?
Xem lời giải »