Cho tam giác ABC có trực tâm H. Gọi D là điểm đối xứng với B qua tâm O của
Câu hỏi:
Cho tam giác ABC có trực tâm H. Gọi D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây đúng?
A. \(\overrightarrow {HA} = \overrightarrow {C{\rm{D}}} ;\overrightarrow {A{\rm{D}}} = \overrightarrow {CH} \)
B. \(\overrightarrow {HA} = \overrightarrow {C{\rm{D}}} ;\overrightarrow {A{\rm{D}}} = \overrightarrow {HC} \)
C. \(\overrightarrow {HA} = \overrightarrow {C{\rm{D}}} ;\overrightarrow {AC} = \overrightarrow {CH} \)
D. \(\overrightarrow {HA} = \overrightarrow {C{\rm{D}}} ;\overrightarrow {A{\rm{D}}} = \overrightarrow {HC} ;\overrightarrow {OB} = \overrightarrow {O{\rm{D}}} \).
Trả lời:
Đáp án đúng là: B
Vì tam giác ACD nội tiếp (O) nên tam giác BCD vuông tại C
Suy ra BC ⊥ CD
Mà AH ⊥ CB nên AH // DC
Vì tam giác ABD nội tiếp (O) nên tam giác BAD vuông tại A
Suy ra BA ⊥ AD
Mà CH ⊥ AB nên CH // DA
Xét tứ giác ADCH có AH // DC và CH // DA
Suy ra ADCH là hình bình hành
Do đó \(\overrightarrow {HA} = \overrightarrow {C{\rm{D}}} ;\overrightarrow {A{\rm{D}}} = \overrightarrow {HC} \)
Vậy ta chọn đáp án B.