X

Các dạng bài tập Toán lớp 12

Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH


Câu hỏi:

Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là phân giác của HAB.

a) Tính cạnh AH, AC biết HB = 18cm, HC = 8cm.

b) Chứng minh tam giác ADC cân và HD.BC = BD.DC.

c) Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Chứng minh

SAEF = SABC.(1 – cos2B).sin2C.

Trả lời:

Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH (ảnh 1)

a) Ta có tam giác ABC vuông tại A, AH BC

Nên: AH2 = BH.CH = 18.8 = 144

AH = 12cm.

AC = \(\sqrt {A{H^2} + H{C^2}} = 4\sqrt {13} \)

b) Vì AD là phân giác \(\widehat {BAH}\) \(\widehat {BAD} = \widehat {DAH}\)

\(\widehat {HAC} = 90^\circ - \widehat {HAB} = \widehat {ABH} = \widehat {ABD}\)

\(\widehat {CDA} = \widehat {DAB} + \widehat {DBA} = \widehat {DAH} + \widehat {CAH} = \widehat {CAD}\)

Suy ra: tam giác CAD cân tại C CA = CD

Vì AD là phân giác \(\widehat {BAH}\) \(\frac{{DH}}{{DB}} = \frac{{AH}}{{AB}} = \sin B = \frac{{AC}}{{BC}}\)

HD.BC = BD.AC = DB.CD

c) Ta có: HE AB, HF AC, AB AC

Nên AEHF là hình chữ nhật

AH = EF

\(\widehat {AEF} = \widehat {EAH} = \widehat {BAH} = 90^\circ - \widehat B = \widehat {ACB}\)

\(\widehat {EAF} = \widehat {BAC}\)

∆AFE ∆ABC (g.g)

\(\frac{{{S_{AFE}}}}{{{S_{ABC}}}} = {\left( {\frac{{EF}}{{BC}}} \right)^2} = \frac{{A{H^2}}}{{B{C^2}}}\)
Ta có: 1 – cos2B = sin2B

(1 – cos2B)sin2C = sin2Bsin2C = (sinBsinC)2

= \({\left( {\frac{{AC}}{{BC}}.\frac{{AB}}{{BC}}} \right)^2} = {\left( {\frac{{AB.AC}}{{B{C^2}}}} \right)^2} = {\left( {\frac{{AH.BC}}{{B{C^2}}}} \right)^2} = {\left( {\frac{{AH}}{{BC}}} \right)^2}\)

\[\frac{{{S_{AFE}}}}{{{S_{ABC}}}} = \left( {1--co{s^2}B} \right)si{n^2}C\]

AEF = SABC.(1 – cos2B).sin2C.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Xét xem dãy un = 3n – 1 có phải là cấp số nhân hay không? Nếu phải hãy xác định công bội.

Xem lời giải »


Câu 2:

Một vé xem phim có mức giá là 60000 đồng. Trong dịp khuyến mãi cuối năm 2018, số lượng người xem phim tăng lên 45% nên tổng doanh thu cũng tăng 8,75%. Hỏi rạp phim đã giảm giá mỗi vé bao nhiêu % so với giá bán ban đầu?

Xem lời giải »


Câu 3:

Tính giá trị của biểu thức: P = (x – 10)2 – x(x + 80) tại x = 0,87.

Xem lời giải »


Câu 4:

Tính giá trị biểu thức A = 100 – 99 + 98 – 97 + … + 4 – 3 + 2.

Xem lời giải »


Câu 5:

Rút gọn biểu thức: \(\frac{{{x^2}}}{{5x + 25}} + \frac{{2x - 10}}{x} + \frac{{50 + 5x}}{{{x^2} + 5x}}\).

Xem lời giải »


Câu 6:

Cho tam giác ABC có \(\widehat B = \widehat C\), gọi H là trung điểm BC. Chứng minh AH là phân giác góc \(\widehat A\).

Xem lời giải »


Câu 7:

Tính 30% của 70.

Xem lời giải »


Câu 8:

Trên mặt phẳng Oxy, cho đường thẳng (d): y = ax + b với a, b là hằng số. Tìm a, b biết: d đi qua điểm M(1; −2) và song song với đường thẳng d1: y = 2x – 1.

Xem lời giải »