X

Các dạng bài tập Toán lớp 12

Rút gọn biểu thức x^2 / (5x + 25) + (2x - 10) / x + (50 + 5x)


Câu hỏi:

Rút gọn biểu thức: \(\frac{{{x^2}}}{{5x + 25}} + \frac{{2x - 10}}{x} + \frac{{50 + 5x}}{{{x^2} + 5x}}\).

Trả lời:

\(\frac{{{x^2}}}{{5x + 25}} + \frac{{2x - 10}}{x} + \frac{{50 + 5x}}{{{x^2} + 5x}}\)

\( = \frac{{{x^3}}}{{5x\left( {x + 5} \right)}} + \frac{{5\left( {2x - 10} \right)\left( {x + 5} \right)}}{{5x\left( {x + 5} \right)}} + \frac{{5\left( {50 + 5x} \right)}}{{5x\left( {x + 5} \right)}}\)

\( = \frac{{{x^3} + 10\left( {x - 5} \right)\left( {x + 5} \right) + 250 + 25x}}{{5x\left( {x + 5} \right)}}\)

\( = \frac{{{x^3} + 10\left( {{x^2} - 25} \right) + 250 + 25x}}{{5x\left( {x + 5} \right)}}\)

\( = \frac{{{x^3} + 10{x^2} + 25x}}{{5x\left( {x + 5} \right)}}\)

\( = \frac{{x\left( {{x^2} + 10x + 25} \right)}}{{5x\left( {x + 5} \right)}}\)

\( = \frac{{x{{\left( {x + 5} \right)}^2}}}{{5x\left( {x + 5} \right)}}\)

\( = \frac{{x + 5}}{5}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Xét xem dãy un = 3n – 1 có phải là cấp số nhân hay không? Nếu phải hãy xác định công bội.

Xem lời giải »


Câu 2:

Một vé xem phim có mức giá là 60000 đồng. Trong dịp khuyến mãi cuối năm 2018, số lượng người xem phim tăng lên 45% nên tổng doanh thu cũng tăng 8,75%. Hỏi rạp phim đã giảm giá mỗi vé bao nhiêu % so với giá bán ban đầu?

Xem lời giải »


Câu 3:

Tính giá trị của biểu thức: P = (x – 10)2 – x(x + 80) tại x = 0,87.

Xem lời giải »


Câu 4:

Tính giá trị biểu thức A = 100 – 99 + 98 – 97 + … + 4 – 3 + 2.

Xem lời giải »


Câu 5:

Cho tam giác ABC có \(\widehat B = \widehat C\), gọi H là trung điểm BC. Chứng minh AH là phân giác góc \(\widehat A\).

Xem lời giải »


Câu 6:

Tính 30% của 70.

Xem lời giải »


Câu 7:

Trên mặt phẳng Oxy, cho đường thẳng (d): y = ax + b với a, b là hằng số. Tìm a, b biết: d đi qua điểm M(1; −2) và song song với đường thẳng d1: y = 2x – 1.

Xem lời giải »


Câu 8:

Cho hình bình hành ABCD và O là giao điểm của AC và BD. Trên đường chéo AC lấy 2 điểm M và N sao cho AM = MN = NC

a) Chứng minh: tứ giác BMDN là hình bình hành.

b) BC cắt DN tại K. Chứng minh: N là trọng tâm của tam giác BDC.

Xem lời giải »