X

Các dạng bài tập Toán lớp 12

Cho tứ diện ABCD có M nằm trên cạnh AB, N nằm trên cạnh AD thoả MB = 2MA, AN = 2ND. Gọi P là điểm thuộc miền trong của tam giác BCD.


Câu hỏi:

Cho tứ diện ABCD có M nằm trên cạnh AB, N nằm trên cạnh AD thoả MB = 2MA, AN = 2ND. Gọi P là điểm thuộc miền trong của tam giác BCD. Tìm giao tuyến của (MNP) và (ABC).

Trả lời:

Cho tứ diện ABCD có M nằm trên cạnh AB, N nằm trên cạnh AD thoả MB = 2MA, AN = 2ND. Gọi P là điểm thuộc miền trong của tam giác BCD.  (ảnh 1)

Dựng hình theo hình vẽ.

Ta có: MB = 2MA, AN = 2ND nên: MAMB=122=NAND

Nên MN không song song với BD

Gọi MN ∩ BD = E, EP ∩ BC = F

Suy ra: (MNP) ∩ (ABC) = MF.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho ∆ABC vuông tại A, đường cao AH. Biết 3AB = 2AC. Tính sinACB^, tanACB^

Xem lời giải »


Câu 2:

Cho tam giác ABC ( AB > BC) có AB + BC = 11cm, B^=60°. Bán kính đường tròn nội tiếp tam giác ABC là r=23 cm. Tính đường cao AH của tam giác ABC.

Xem lời giải »


Câu 3:

Cho C = 5 + 52 + … + 520. Chứng minh rằng C chia hết cho 5, 6, 13.

Xem lời giải »


Câu 4:

Cho x + y = 12 và xy = 32. Tính x4 + y4.

Xem lời giải »