X

Các dạng bài tập Toán lớp 12

Cho tứ giác ABCD có góc D + góc C = 90 độ. Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BD, DC, CA


Câu hỏi:

Cho tứ giác ABCD có D^+C^=90°. Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BD, DC, CA. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một đường tròn.

Trả lời:

Cho tứ giác ABCD có góc D + góc C = 90 độ. Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BD, DC, CA (ảnh 1)

Giả sử AD cắt BC tại E

Khi đó từ giả thiết: D^+C^=90°ta có: E^=180°C^+D^=90°

Ta lần lượt có: MN // AD // PQ; MQ // BC // PN

Do đó dựa trên tính chất của góc có cạnh tương ứng song song ta được:

MNQ^=NPQ^=E^=90°

Do đó bốn điểm M, N, P, Q cùng nằm trên một đường tròn đường kính NQ.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho BH=13HC. Điểm M di động nằm trên BC sao cho BM=xBC. Tìm x sao cho độ dài của MA+GC đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 2:

Cho tam giác ABC có A^=70°, các đường phân giác BD, CE cắt nhau ở I. Tính BIC^

Cho tam giác ABC có góc A= 70 độ, các đường phân giác BD, CE cắt nhau ở I (ảnh 1)

Xem lời giải »


Câu 3:

Cho tam giác ABC có C^=90°. Kẻ đường cao CH. Biết HB - HA = AC. Tính A^,B^.

Xem lời giải »


Câu 4:

Cho tam giác ABC có góc C nhọn, AH và BK là hai đường cao, HK = 7, diện tích tứ giác ABHK bằng 7 lần diện tích tam giác CHK. Khi đó bán kính đường tròn ngoại tiếp tam giác ABC bằng?

Xem lời giải »


Câu 5:

Cho tam giác ABC có trọng tâm G và độ dài ba cạnh AB, BC, CA lần lượt là 15, 18, 27.

a) Tính diện tích và bán kính đường tròn nội tiếp tam giác ABC.

b) Tính diện tích tam giác GBC.

Xem lời giải »


Câu 6:

Cho tứ giác ABCD có A^=110°,B^=90°,C^D^=20°. Tính C^,D^.

Xem lời giải »


Câu 7:

Cho tứ giác ABCD có E là trung điểm của đoạn thẳng AB. Điểm F là trung điểm của đoạn thẳng BC. Điểm G là trung điểm của đoạn thẳng DC. Điểm H là trung điểm của đoạn thẳng AD. Hỏi tứ giác EFGH là hình gì? Chứng minh điều đó.

Xem lời giải »


Câu 8:

Cho tứ giác ABCD, E và F lần lượt là trung điểm của các cạnh AB và CD. Gọi M, N, P, Q lần lượt là trung điểm các đoạn AF, CE, BF và DE. Chứng minh rằng MNPQ là hình bình hành.

Xem lời giải »