Cho x; y > 0 thỏa mãn log2x + log2y = log4( x + y) Tìm x; y để biểu thức P = x^2 + y^2
Câu hỏi:
Cho x; y > 0 thỏa mãn log2x + log2y = log4( x + y) Tìm x; y để biểu thức P = x2 + y2 đạt giá trị nhỏ nhất.
A.
B.
C. x = y= 1
D.
Trả lời:
Chọn A.
Theo đầu bài ta có : 2log2xy = log2(x + y) hay x + y = (xy) 2
Đặt u = x + y và v = xy ta có điều kiện u2 - 4v ≥ 0 ; u > 0; v > 0.
Mà u = v2 nên v4 - 4v ≥ 0 suy ra
Ta có P = v4 - 2v = g(v) với
Đạo hàm g’(v) = 4v3-2 > 0 với mọi
Do đó hàm số g(v) đồng biến trên
nên khi
Xem thêm bài tập Toán có lời giải hay khác:
Câu 2:
Kết quả rút gọn của biểu thức là:
Xem lời giải »
Câu 3:
Cho a; b > 0, Nếu viết thì xy bằng bao nhiêu ?
Xem lời giải »
Câu 4:
Thu gọn biểu thức ta được:
Xem lời giải »
Câu 5:
Cho với b> a > 1 và P = log2ab + 54logba. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là?
Xem lời giải »
Câu 6:
Cho a; b; c lần lượt là độ dài của hai cạnh góc vuông và cạnh huyền của một tam giác vuông, trong đó c - b và c + b khác 1. Khi đó logc+ba + logc-ba bằng:
Xem lời giải »
Câu 7:
Cho hai số thực a; b với 1< a< b. Khẳng định nào sau đây là khẳng định đúng?
Xem lời giải »
Câu 8:
Cho a; b > 0 thỏa mãn a2 + b 2 = 7ab. Chọn mệnh đề đúng trong các mệnh đề sau?
Xem lời giải »