X

Các dạng bài tập Toán lớp 12

Chứng minh rằng số dư trong phép chia một số nguyên tố cho 30 chỉ có thể là 1 hoặc là số nguyên tố. Khi chia cho 60 thì kết quả ra sao


Câu hỏi:

Chứng minh rằng số dư trong phép chia một số nguyên tố cho 30 chỉ có thể là 1 hoặc là số nguyên tố. Khi chia cho 60 thì kết quả ra sao

Trả lời:

Giả sử p là số nguyên tố và p = 30k + r (0 < r < 30)

Nếu r là hợp số thì r co ước nguyên tố q ≤ 30

 q = 2, 3, 5

Nhưng với q = 3, 3, 5 thì p lần lượt chia hết cho 2, 3, 5  vô lí . Vậy r = 1 hoặc r là số nguyên tố.

Khi chia cho 60 thì kết quả không còn đúng nữa

Chẳng hạn p = 109 = 60.1 + 49 (49 là hợp số)

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho x + y = 15. Tìm min, max B=x4+y3

Xem lời giải »


Câu 2:

Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27.

Xem lời giải »


Câu 3:

Cho x, y, z thỏa mãn đk x + y + z = a. Tìm GTNN của P=1+ax1+ay1+az

Xem lời giải »


Câu 4:

Cho x + 3y – 4 = 0, tính x3 - x2 + 9x2y - 9y2 + 27xy2 + 27y3 - 6xy

Xem lời giải »


Câu 5:

Cho a, b, c > 0. Chứng minh a5b2+b5c2+c5a2a3+b3+c3

Xem lời giải »


Câu 6:

Chứng minh rằng với mọi số tự nhiên n thì (n + 2022)(n + 2023) chia hết cho 2

Xem lời giải »


Câu 7:

Cho 3 số tự nhiên a b c không chia hết cho 4. Khi chia a b c cho 4 thì có số dư khác nhau. Chứng minh a + b + c chia hết cho 2

Xem lời giải »


Câu 8:

Có 35 viên bi trong đó có 7 viên màu xanh 8 viên màu đỏ và 20 viên bi màu vàng vậy số bi màu xanh chiếm bao nhiêu phần của tổng số bi ?

Xem lời giải »