Chứng tỏ rằng A = 1 + 4 + 4^2 + … + 4^2021 chia hết cho 21.
Câu hỏi:
Chứng tỏ rằng A = 1 + 4 + 42 + … + 42021 chia hết cho 21.
Trả lời:
Dựa vào số mũ ta có thể thấy A có tất cả 2022 hạng tử nên chia làm 674 nhóm, mỗi nhóm 3 hạng tử.
A = 1 + 4 + 42 + … + 42021
A = (1 + 4 + 42) + (43 + 44 + 45) + … + (42019 + 42020 + 42021)
A = (1 + 4 + 42) + 43(1 + 4 + 42) + … + 42019(1 + 4 + 42)
A = (1 + 4 + 42)(1 + 43 + … + 42019)
A = 21.(1 + 43 + … + 42019) ⋮ 21
Vậy A ⋮ 21.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 2:
Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27.
Xem lời giải »
Câu 3:
Cho x, y, z thỏa mãn đk x + y + z = a. Tìm GTNN của
Xem lời giải »
Câu 4:
Cho x + 3y – 4 = 0, tính x3 - x2 + 9x2y - 9y2 + 27xy2 + 27y3 - 6xy
Xem lời giải »
Câu 5:
Chứng minh rằng A = 35n + 2 + 35n + 1 – 35n chia hết cho 11 với mọi n ∈ ℕ
Xem lời giải »
Câu 6:
Chứng minh rằng A = 2 + 22 + 23 + … + 260 chia hết cho 3 và 7.
Xem lời giải »
Câu 7:
Chứng minh rằng số dư trong phép chia một số nguyên tố cho 30 chỉ có thể là 1 hoặc là số nguyên tố. Khi chia cho 60 thì kết quả ra sao
Xem lời giải »
Câu 8:
Cho a, b, c > 0. Chứng minh
Xem lời giải »