X

Các dạng bài tập Toán lớp 12

Giả sử a, b là 2 số thực phân biệt thỏa mãn: a2 + 3a = b2 + 3b = 2. Chứng minh rằng a3 + b3 = -45.


Câu hỏi:

Giả sử a, b là 2 số thực phân biệt thỏa mãn: a2 + 3a = b2 + 3b = 2. Chứng minh rằng a3 + b3 = -45.

Trả lời:

Ta có:

a2 + 3a = b2 + 3b

(a2 – b2) + (3a – 3b) = 0

(a – b)(a +b + 3) = 0

Vì a và b phân biệt nên a – b ≠ 0

Suy ra: a + b + 3 = 0 hay a + b = -3

Suy ra: (a + b)2 = 9

a2 + 2ab + b2 = 9 (1)

Mà a2 + 3a = b2 + 3b = 2

Suy ra: a2 + b2 + 3a + 3b = 2 + 2 = 4

a2 + b2 = 4 – 3(a + b) = 4 – 3.(-3) = 13 (2)

Từ (1) và (2) suy ra: 2ab = -4 hay ab = -2 (2)

Lấy (2) + (3): a2 - ab + b2 = 15

Do đó: a3 + b3 = (a + b)(a2 – ab + b2) = 15.(-3) = -45.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:

a) AP=BN

b) Tứ giác OKME là hình chữ nhật.

c) P, O, N thẳng hàng và KE // PN.

Xem lời giải »


Câu 2:

Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức S=1R3+1R4+...+1R2022+1R2023

Xem lời giải »


Câu 3:

Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).

Xem lời giải »


Câu 4:

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho MN=2MAMB+MC. Chứng minh MN luôn đi qua một điểm cố định.

Xem lời giải »


Câu 5:

Cho hai tập hợp A = (-1;2] và B = {x R| mx ≥ 1} (với m là tham số thực). Xác định tất cả giá trị của tham số m để A ∩ B = .

Xem lời giải »


Câu 6:

Cho A = 3 + 32 + 33 + … + 399 + 3100. Hỏi 2A + 3 có phải là số chính phương không?

Xem lời giải »


Câu 7:

Cho A = [1;2], B = [m; m + 2]. Tìm m để B là tập con của của A.

Xem lời giải »


Câu 8:

Cho A = (2m - 1; 2m + 3) và B = (-1; 1).

Xác định m để B là tập con A và A ∩ B = .

Xem lời giải »