X

Các dạng bài tập Toán lớp 12

Giải phương trình: sin (3x + 2pi/3) + sin (x - 7pi/5) = 0


Câu hỏi:

Giải phương trình: \(\sin \left( {3x + \frac{{2\pi }}{3}} \right) + \sin \left( {x - \frac{{7\pi }}{5}} \right) = 0\).

Trả lời:

\(\sin \left( {3x + \frac{{2\pi }}{3}} \right) + \sin \left( {x - \frac{{7\pi }}{5}} \right) = 0\)

\(\sin \left( {3x + \frac{{2\pi }}{3}} \right) - \sin \left( {x - \frac{{7\pi }}{5}} \right) = 0\)

\(\sin \left( {3x + \frac{{2\pi }}{3}} \right) = \sin \left( {x - \frac{{7\pi }}{5}} \right)\)

\(\left[ \begin{array}{l}3x + \frac{{2\pi }}{3} = x - \frac{{7\pi }}{5} + k2\pi \\3x + \frac{{2\pi }}{3} = x - \left( {x - \frac{{7\pi }}{5}} \right) + k2\pi \end{array} \right.\)

\(\left[ \begin{array}{l}x = - \frac{{8\pi }}{{15}} + k\pi \\x = \frac{{11\pi }}{{60}} + \frac{{k\pi }}{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có nghiệm là \(\left[ \begin{array}{l}x = - \frac{{8\pi }}{{15}} + k\pi \\x = \frac{{11\pi }}{{60}} + \frac{{k\pi }}{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Xét xem dãy un = 3n – 1 có phải là cấp số nhân hay không? Nếu phải hãy xác định công bội.

Xem lời giải »


Câu 2:

Một vé xem phim có mức giá là 60000 đồng. Trong dịp khuyến mãi cuối năm 2018, số lượng người xem phim tăng lên 45% nên tổng doanh thu cũng tăng 8,75%. Hỏi rạp phim đã giảm giá mỗi vé bao nhiêu % so với giá bán ban đầu?

Xem lời giải »


Câu 3:

Tính giá trị của biểu thức: P = (x – 10)2 – x(x + 80) tại x = 0,87.

Xem lời giải »


Câu 4:

Tính giá trị biểu thức A = 100 – 99 + 98 – 97 + … + 4 – 3 + 2.

Xem lời giải »


Câu 5:

Cho hình bình hành ABCD. Vẽ về phía ngoài hình bình hành các tam giác đều ABM, AND. Gọi E, F, Q theo thứ tự là trung điểm của BD, AN, AM. Hỏi tam giác MNC là tam giác gì? Vì sao?

Xem lời giải »


Câu 6:

Cho phương trình: x2 – (2m + 1)x + m2 + 2 = 0. Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn 3x1x2 – 5(x1 + x2) + 7 = 0.

Xem lời giải »


Câu 7:

Tìm x biết 20 – 2(x – 1)2 = 2.

Xem lời giải »


Câu 8:

Chứng minh 22020 + 22021 + 22022 + 72023 + 72024 chia hết cho 7.

Xem lời giải »