X

Các dạng bài tập Toán lớp 12

Gọi z1, z2 lần lượt là hai nghiệm của phương trình z^2 - (1 + 3i) z – 2 + 2i = 0


Câu hỏi:

Gọi z1, z2 lần lượt là hai nghiệm của phương trình z2 - (1 + 3i) z – 2 + 2i = 0  và thỏa mãn | z1| > | z2|. Tìm giá trị của biểu thức 

A. 0,5

B. 1,5

C. 1

D. 2

Trả lời:

Chọn B.

Phương trình đã cho tương đương với:

( z – 2i) ( z – 1 – i) = 0

Suy ra: z = 2i hoặc z = 1 + i

Do | z1| > | z2| nên ta có z1 = 2i và z2 = 1 + i

Ta có 

=1-2i2+1-i2=i22+i2=12+1=32= 1,5

 

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho các số phức z thỏa mãn |z – 2 – 4i| = 2. Gọi z1; z2 số phức có module lớn nhất và nhỏ nhất. Tổng phần ảo của hai số phức bằng?

Xem lời giải »


Câu 2:

Gọi z1; z2  lần lượt là hai nghiệm của phương trình z2 – 4z + 7 = 0 .Tính giá trị của biểu thức

Xem lời giải »


Câu 3:

Cho các số phức z thỏa mãn |z2 + 4| = 2|z|. Kí hiệu M = max|z| và m = min|z|. Tìm module của số phức w = M + m?

Xem lời giải »


Câu 4:

Cho số phức z1; z2 thỏa mãn . Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của biểu thức | z1 - z2 | là?

Xem lời giải »


Câu 5:

Trong các số phức z thỏa mãn điều kiện |z – 1 – 2i| = 2, tìm số phức z có môđun nhỏ nhất.

Xem lời giải »