Tìm giá trị lớn nhất, nhỏ nhất của môđun số phức - Toán lớp 12
Tìm giá trị lớn nhất, nhỏ nhất của môđun số phức
Với Tìm giá trị lớn nhất, nhỏ nhất của môđun số phức Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tìm giá trị lớn nhất, nhỏ nhất của môđun số phức từ đó đạt điểm cao trong bài thi môn Toán lớp 12.
Dạng 1: Cho số phức z thỏa mãn |z - (a + bi)| = c, (c > 0), tìm giá trị nhỏ nhất, giá trị lớn nhất của P với P = |z|
1. Phương pháp
|z - (a + bi)| = c, (c > 0) => Tập hợp các điểm M biểu diễn số phức z là đường tròn có tâm I(a; b) và bán kính R = c
Biểu diễn P là 1 điểm M nào đó, dựa vào hình vẽ xác định max min cho thích hợp.
Ví dụ P = |z| tức là đường tròn tâm O:
Ví dụ P = |z + i| tức là đường tròn tâm H (0;-1)
2. Ví dụ minh họa
Ví dụ 1: Cho |z - 4 + 3i| = 3. Tìm số phức có module nhỏ nhất, lớn nhất?
Hướng dẫn:
Áp dụng công thức: |z - a - bi| = c ⇔ |z - (a + bi)| = c => -c + |a + bi| ≤ |z| ≤ c + |a + bi|
Ta có: |z - 4 + 3i| = 3 ⇔ |z - (4 - 3i)| = 3 ⇔ - 3 + |4 - 3i| ≤ |z| ≤ 3 + |4 - 3i| ⇔ 2 ≤ |z| ≤ 8
Cách tìm số phức:
+ Tìm Số phức z có module nhỏ nhất là:
+ Tương tự: Số phức z có module lớn nhất là:
Ví dụ 2. Trong mặt phẳng phức Oxy, các số phức z thỏa |z - 5i| ≤ 3. Nếu số phức z có môđun nhỏ nhất thì phần ảo bằng bao nhiêu?
A. 0. B. 3. C. 2. D. 4.
Hướng dẫn:
Gọi M(x ;y) là điểm biểu diễn số phức z = x + yi.
Gọi E(0 ;5) là điểm biểu diễn số phức 5i
Ta có: |z - 5i| ≤ 3 => MA ≤ 3. Vậy tập hợp điểm biểu diễn số phức z là hình tròn tâm A(0 ;5) ; R = 3 như hình vẽ
Số phức z có môđun nhỏ nhất nhỏ nhất.Dựa vào hình vẽ, ta thấy z = 2i. Suy ra phần ảo bằng 2
Chọn đáp án C.
Ví dụ 3. Tìm giá trị lớn nhất của |z| biết:
A. √2 B. 2 C. 1 D. 3
Hướng dẫn:
Ta có:
Chọn đáp án B.
Ví dụ 4: Cho số phức z thỏa mãn |z2 - i| = 1. Tìm giá trị lớn nhất của |z|.
A. 2 B. √2 C. 2√2 D. √2
Hướng dẫn:
Ta có:
1 ≥ |z2| - |i| = |z|2 - 1 => |z|2 ≤ 2 => |z| ≤ 2
Chọn đáp án là D
Ví dụ 5: Cho số phức z thỏa mãn:
Tìm giá trị nhỏ nhất của |z|.
Hướng dẫn:
Ta có:
|x + yi + i + 1| = |x - yi - 2i|
⇔ (x + 1)2 + (y + 1)2 = x2 + (y + 2)2
⇔ 2x - 2y - 2 = 0 => x = 1 + y
Chọn đáp án A.
Ví dụ 6: Trong các số phức z thỏa mãn điều kiện |z - 2 - 4i| = |z - 2i|. Số phức z có môđun nhỏ nhất là?
A. z = -2 + 2i B. z = 2 - 2i
C. z = 2 + 2i D. z = -2 - 2i
Hướng dẫn:
Gọi z = x + yi (x, y ∈ R).
Ta có: |x - 2 - 4(y - 4)i| = |x + (y - 2)x| ⇔ y = -x + 4
Do đó tập hợp các điểm biểu diễn số phức z là đường thẳng có phương trình x + y - 4 = 0
Mặt khác:
Chọn đáp án C.
Ví dụ 7: Cho số phức z thỏa mãn |z − 1 − 2i| = 1. Tìm giá trị nhỏ nhất của |z|
A. √2 B. 1 C. 2 D. √5 - 1
Hướng dẫn:
Tập hợp các điểm M biểu diễn số phức z thỏa mãn giả thiết là đường tròn tâm I(1; −2) bán kính r = 1.
Do đó min |z| = OI − r = √5 − 1.
Chọn đáp án là D.
Ví dụ 8: Cho số phức z thỏa mãn điều kiện |z - 1 + 2i| = √5 và w = z + 1 + i có môđun lớn nhất. Số phức z có môđun bằng:
A. 2√5 B. 3√2 C. √6 D. 5√2
Hướng dẫn:
Gọi z = x + yi khi đó z - 1 + 2i = (x - 1) + (y + 2)i
Ta có:
Suy ra tập hợp điểm M(x; y) biểu diễn số phức z thuộc đường tròn (C) tâm I(1; -2) bán kính R = √5 như hình vẽ:
Dễ thấy O ∈ (C), N(-1; -1) ∈ (C)
Theo đề ta có: M(x; y) ∈ (c) là điểm biểu diễn cho số phức z thỏa mãn:
W = z + 1 + i = x + yi + 1 + i = (x + 1) + (y + 1)i
Suy ra |z + 1 + i| đạt giá trị lớn nhất khi MN lớn nhất
Mà M, N ∈ (C) nên MN lớn nhất khi MN là đường kính đường tròn (c)
⇔ I là trung điểm MN => M(3; -3) => z = 3 - 3i
Cách 2: (giải thuần đại số)
Đặt z = x + yi(x, y ∈ R) thì |z - 1 + 2i| = √5 ⇔ (x - 1)2 + (y + 2)2 = 5 (1)
|w|2 = |z + 1 + i|2 = (x + 1)2 + (y + 1)2 = (x - 1)2 + (y + 2)2 + 4x - 2y - 3 = 4x - 2y + 2 (do (1))
Dấu “=” của (2) xảy ra
Như vậy do |w| đạt giá trị lớn nhất nên x = -3, y = -3. Từ đó |z| = 3√2.
Chọn B.
Ví dụ 9: Xét số phức z thỏa mãn 4|z + i| + 3|z − i| = 10. Gọi M, m tương ứng là giá trị lớn nhất và nhỏ nhất của |z|. Tính M + m
Hướng dẫn:
Gọi A(0; −1), B(0; 1) có trung điểm là O(0; 0). Điểm M biểu diễn số phức z. Theo công thức trung tuyến thì:
Theo giả thiết: 4MA + 3MB = 2√2. Đặt a = MA
Chọn đáp án là C.