Tìm số tự nhiên X nhỏ nhất có 11 chữ số biết X chia cho 13 dư 3
Câu hỏi:
Tìm số tự nhiên X nhỏ nhất có 11 chữ số biết X chia cho 13 dư 3, chia cho 37 dư 3 và chia cho 29 dư 4.
Trả lời:
Theo bài ra ta có: \(\left\{ \begin{array}{l}X \equiv 3\left( {\bmod \,13} \right)\\X \equiv 4\left( {\bmod \,29} \right)\\X \equiv 3\left( {\bmod \,37} \right)\end{array} \right.\)
Suy ra: X ≡ 5 775 (mod 13949)
⇒ X = 5 775 + 13949.t
Vì X là số nhỏ nhất có 11 chữ số nên X ≥ 1010
⇒ 5775 + 13949.t ≥ 1010
⇒ t ≥ \(\frac{{{{10}^{10}} - 5775}}{{13949}} \approx 716896,8546\)
Để X nhỏ nhất thì t cũng nhỏ nhất
Do đó ta chọn t = 716 897
Vậy số nhỏ nhất X thỏa mãn yêu cầu đề bài là:
X = 5 775 + 13 949 . 716 897 = 10 000 002 028.