Trên đoạn thẳng AB lấy một điểm M (MA > MB). Trên cùng một nửa mặt phẳng có bờ AB
Câu hỏi:
Trên đoạn thẳng AB lấy một điểm M (MA > MB). Trên cùng một nửa mặt phẳng có bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F, I, K theo thứ tự là trung điểm của CM, CB, DM, DA. Chứng minh rằng EFIK là hình thang cân và
Trả lời:
Gọi EK giao AB tại P
Xét Δ CMB có EF là đường trung bình của Δ
⇒ EF // MB ⇒ EF // AB. (1)
Xét ΔΔADM có KI là đường trung bình của Δ
⇒ KI // AM ⇒⇒ KI // AB. (2)
Từ (1) và (2) ⇒ Tứ giác EFIK là hình thang (*)
Gọi P; Q lần lượt là trung điểm của AM và BN.